Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Effective-liquid approach to the generalized Onsager theories of the isotropic-nematic transition of hard convex-bodies

dc.contributor.authorCuesta, J. A.
dc.contributor.authorFernández Tejero, Carlos
dc.contributor.authorXu, H.
dc.contributor.authorBaus, Marc
dc.date.accessioned2023-06-20T18:54:11Z
dc.date.available2023-06-20T18:54:11Z
dc.date.issued1991-10-15
dc.description© 1991 The American Physical Society. This work has been partially supported by a grant from the Dirección General de Investigación Científica y Técnica (Spain) under Grant No. PB88-0140. One of us (M.B.) acknowledges the financial support of the Fonds National de la Recherche Scientifique and also from the Association Euratom-Etat Belge. Hong Xu acknowledges the financial support of the Stichting voor Fundamenteel Onderzoek der Materie (FOM) of the Netherlands.
dc.description.abstractRecent attempts to generalize the classical Onsager theory of nematic ordering to finite-density systems of finite-length hard convex bodies are related and compared. It is pointed out that, although good results can be obtained in three-dimensions (3D), in two dimensions (2D) the underlying factorization approximation of the radial and angular variables always implies a second-order isotropic-nematic transition instead of the crossover from a weakly first-order transition to a continuous (Kosterlitz-Thouless) transition as seen in the simulations. The quantitative agreement with the simulations is also much poorer in 2D than in 3D. On the contrary, for large spatial dimensions these theories become exact.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDirección General de Investigación Científica y Técnica (Spain)
dc.description.sponsorshipFonds National de la Recherche Scientifique
dc.description.sponsorshipAssociation Euratom-Etat Belge
dc.description.sponsorshipStichting voor Fundamenteel Onderzoek der Materie (Netherlands)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23976
dc.identifier.doi10.1103/PhysRevA.44.5306
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.44.5306
dc.identifier.relatedurlhttp://pra.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58894
dc.issue.number8
dc.journal.titlePhysical Review A
dc.language.isoeng
dc.page.final5309
dc.page.initial5306
dc.publisherAmerican Physical Society
dc.relation.projectIDPB88-0140
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordDensity-functional theory
dc.subject.keywordSpherocylinders ellipsoids
dc.subject.keywordCrystals
dc.subject.keywordSystems
dc.subject.keywordSpheres
dc.subject.keywordSimulation
dc.subject.keywordFluid
dc.subject.keywordModel
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleEffective-liquid approach to the generalized Onsager theories of the isotropic-nematic transition of hard convex-bodies
dc.typejournal article
dc.volume.number44
dcterms.references[1] See J. F. Lutsko and M. Baus, Phys. Rev. A 41, 6647 (1990), and references therein. [2] See, e.g., B. B. Laird and D. M. Kroll, Phys. Rev. A 42, 4810 (1990); A. de Kuyper, W. L. Vos, J. L. Barrat, J. P. Hansen, and J. A. Schouten, J. Chem. Phys. 93, 5187 (1990);X. G. Wu and M. Baus, Mol. Phys. 62, 375 (1987); J. L. Barrat, J. P. Hansen, G. Pastore, and E. M. Waisman, J. Chem. Phys. 86, 6360 (1987). [3] J. A. C. Veerman and D. Frenkel, Phys. Rev. A 41, 3237 (1990); A. Stroobants, H. N. W. Lekkerkerker, and D. Frenkel, ibid. 36, 2929 (1987); D. Frenkel and B.M. Mulder, Mol. Phys. 55, 1171 (1985); D. Frenkel, J. Phys. Chem. 92, 3280 (1988). [4] J. A. Cuesta and D. Frenkel, Phys. Rev. A 42, 2126 (1990). [5] U. P. Singh and Y. Singh, Phys. Rev. A 33, 2725 (1986). [6] M. Baus, J. L. Colot, X. G. Wu, and H. Xu, Phys. Rev. Lett. 59, 2184 (1987); J. L. Colot, X. G. Wu, H. Xu, and M. Baus, Phys. Rev. A 38, 2022 (1988). [7] J. F. Marko, Phys. Rev. Lett. 60, 325 (1988). [8] S. D. Lee, J. Chem. Phys. 87, 4932 (1987); 89, 7036 (1988). [9] A. Perera, G. N. Patey, and J. J. Weis, J. Chem. Phys. 89, 6941 (1988). [10] R. HoJyst and A. Poniewierski, Mol. Phys. 68, 381 (1989); Phys. Rev. A 39, 2742 (1989); A. Poniewierski and R. Horyst, Phys. Rev. Lett. 61, 2461 (1988). [11] J. A. Cuesta, C. F. Tejero, and M. Baus, Phys. Rev. A 39, 6498 (1989). [12] B. Tjipto-Margo and G. T. Evans, J. Chem. Phys. 93, 4254 (1990). [13] L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949). [14] R. Pynn, J. Chem. Phys. 60, 4579 (1974). [15] P. Tarazona, Phys. Rev. A 31, 2672 (1985). [16] J. A. Cuesta, C. F. Tejero, and M. Baus (unpublished). [17] H. O. Carmesin, H. L. Frisch, and J. K. Percus, Phys. Rev. B40, 9416 (1989). [18] R. F. Kayser, Jr. and H. J. Raveche, Phys. Rev. A 17, 2067 (1978). [19] J. A. Cuesta and C. F. Tejero, Phys. Lett. A 152, 15 (1991).
dspace.entity.typePublication
relation.isAuthorOfPublication45ce99f0-8f7e-41b5-ac11-1ae7ba368c80
relation.isAuthorOfPublication.latestForDiscovery45ce99f0-8f7e-41b5-ac11-1ae7ba368c80

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
F-Tejero29.pdf
Size:
191.94 KB
Format:
Adobe Portable Document Format

Collections