Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Spatial Modeling of Rainfall Patterns over the Ebro River Basin Using Multifractality and Non-Parametric Statistical Techniques

dc.contributor.authorValencia Delfa, José
dc.contributor.authorTarquis, Ana
dc.contributor.authorSaa, Antonio
dc.contributor.authorVilleta López, María Del Carmen
dc.contributor.authorGascó, José
dc.date.accessioned2023-06-19T13:40:27Z
dc.date.available2023-06-19T13:40:27Z
dc.date.issued2015
dc.description.abstractRainfall, one of the most important climate variables, is commonly studied due to its great heterogeneity, which occasionally causes negative economic, social, and environmental consequences. Modeling the spatial distributions of rainfall patterns over watersheds has become a major challenge for water resources management. Multifractal analysis can be used to reproduce the scale invariance and intermittency of rainfall processes. To identify which factors are the most influential on the variability of multifractal parameters and, consequently, on the spatial distribution of rainfall patterns for different time scales in this study, universal multifractal (UM) analysis—C1, α, and γs UM parameters—was combined with non-parametric statistical techniques that allow spatial-temporal comparisons of distributions by gradients. The proposed combined approach was applied to a daily rainfall dataset of 132 time-series from 1931 to 2009, homogeneously spatially-distributed across a 25 km × 25 km grid covering the Ebro River Basin. A homogeneous increase in C1 over the watershed and a decrease in α mainly in the western regions, were detected, suggesting an increase in the frequency of dry periods at different scales and an increase in the occurrence of rainfall process variability over the last decades.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipCentro de Estudios e Investigación para la Gestión de Riesgos Agrarios y Medioambientales (CEIGRAM)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/62269
dc.identifier.doi10.3390/w7116204
dc.identifier.issn2073-4441
dc.identifier.officialurlhttps://doi.org/10.3390/w7116204
dc.identifier.relatedurlhttps://www.mdpi.com/2073-4441/7/11/6204
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34242
dc.issue.number11
dc.journal.titleWater
dc.language.isoeng
dc.page.final6227
dc.page.initial6204
dc.publisherMDPI
dc.relation.projectIDCGL2014-58322-R; MTM2013-46374-P; CICYT PCIN-2014-080
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordRainfall patterns
dc.subject.keyworduniversal multifractal parameters
dc.subject.keywordCramer-Von Mises statistic
dc.subject.keywordtime series
dc.subject.keywordspatial distributions
dc.subject.ucmEstadística
dc.subject.unesco1209 Estadística
dc.titleSpatial Modeling of Rainfall Patterns over the Ebro River Basin Using Multifractality and Non-Parametric Statistical Techniques
dc.typejournal article
dc.volume.number7
dspace.entity.typePublication
relation.isAuthorOfPublication2253ced8-d3af-4d7a-b766-efaf9401f665
relation.isAuthorOfPublication.latestForDiscovery2253ced8-d3af-4d7a-b766-efaf9401f665

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
water-07-06204-v2.pdf
Size:
1.75 MB
Format:
Adobe Portable Document Format

Collections