Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Revealing Geometry and Fault Interaction on a Complex Structural System Based on 3D P-Cable Data: The San Mateo and San Onofre Trends, Offshore Southern California

dc.contributor.authorHolmes, James J.
dc.contributor.authorPerea, Héctor
dc.contributor.authorDriscoll, Neal W.
dc.contributor.authorKent, Graham M.
dc.date.accessioned2023-06-17T09:17:55Z
dc.date.available2023-06-17T09:17:55Z
dc.date.issued2021
dc.description.abstractDeformation observed along the San Mateo (SMT) and San Onofre trends (SOT) in southern California has been explained by two opposing structural models, which have very different hazard implications for the coastal region. One model predicts that the deformation is transpressional in a predominantly right lateral fault system with left lateral step-overs. Conversely in the alternative model, the deformation is predicted to be compressional associated with a regional blind thrust that reactivated detachment faults along the continental margin. State-of-the-art 3D P-Cable seismic data were acquired to characterize the geometry and linkage of faults in the SMT and SOT. The new observations provide evidence that deformation along the slope is more consistent with step-over geometry than a regional blind thrust model. For example, regions in the SOT exhibit small scale compressional structures that deflect canyons along jogs in the fault segments across the slope. The deformation observed in the SMT along northwesterly trending faults has a mounded, bulbous character in the swath bathymetry data with steep slopes ( ∼ 25°) separating the toe of the slope and the basin floor. The faulting and folding in the SMT are very localized and occur where the faults trend more northwesterly (average trend ∼ 285°) with the deformation dying away both towards the north and east. In comparison, the SOT faults trend more northerly (average trend ∼ 345°). The boundary between these fault systems is abrupt and characterized by shorter faults that appear to be recording right lateral displacement and possibly accommodating the deformation between the two larger fault systems. Onlapping undeformed turbidite layers reveal that the deformation associated with both major fault systems may be inactive and radiocarbon dating suggests deformation ceased in the middle to late Pleistocene (between 184 and 368 kyr). In summary, our preferred conceptual model for tectonic deformation along the SMT and SOT is best explained by left lateral step-overs along the predominantly right lateral strike-slip fault systems.
dc.description.departmentDepto. de Geodinámica, Estratigrafía y Paleontología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. H2020
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipCalifornia Public Utility Commission
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/69008
dc.identifier.doi10.3389/feart.2021.653366
dc.identifier.issn2296-6463
dc.identifier.officialurlhttps://doi.org/10.3389/feart.2021.653366
dc.identifier.relatedurlhttps://www.frontiersin.org/articles/10.3389/feart.2021.653366/full
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8557
dc.journal.titleFrontiers in Earth Science
dc.language.isoeng
dc.publisherFrontiers Media
dc.relation.projectIDPALEOSEISQUAKE (657769)
dc.relation.projectID2018-T1/AMB-11039
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu551.24(794)
dc.subject.keywordtectonics
dc.subject.keyword3D seismic acquisition
dc.subject.keywordpiston coring
dc.subject.keywordnewport-inglewood-rose canyon fault system
dc.subject.keywordP-cable
dc.subject.keywordsan onofre
dc.subject.keywordsan onofre trend
dc.subject.keywordsan mateo trend
dc.subject.ucmGeodinámica
dc.subject.unesco2507 Geofísica
dc.titleRevealing Geometry and Fault Interaction on a Complex Structural System Based on 3D P-Cable Data: The San Mateo and San Onofre Trends, Offshore Southern California
dc.typejournal article
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Revealing Geometry and Fault Interaction on a Complex Structural System Based on 3D P-Cable Data The San Mateo and San Onofre Trends, Offshore Southern California (1).pdf
Size:
11.31 MB
Format:
Adobe Portable Document Format

Collections