Biotribology and biocorrosion of MWCNTs-reinforced PEO coating on AZ31B Mg alloy
dc.contributor.author | Daavari, Morteza | |
dc.contributor.author | Atapour, Masoud | |
dc.contributor.author | Mohedano Sánchez, Marta | |
dc.contributor.author | Arrabal Durán, Raúl | |
dc.contributor.author | Matykina, Endzhe | |
dc.contributor.author | Taherizadeh, Aboozar | |
dc.date.accessioned | 2023-06-17T08:22:57Z | |
dc.date.available | 2023-06-17T08:22:57Z | |
dc.date.issued | 2021-03-05 | |
dc.description.abstract | Over the last two decades, various methods have been developed for surface modification of Mg alloys among which plasma electrolytic oxidation (PEO) is one of the most effective methods for tailoring surface properties. However, PEO coatings still need to be improved in various aspects, including mechanical and corrosion performances. In the current study, multi-walled carbon nanotubes (MWCNTs) were incorporated into a PEO coating structure via one-step process. Characterization techniques in this study included scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffraction (XRD). Corrosion behavior was evaluated by electrochemical tests taking into account quasi-in vivo conditions in order to get closer to implant degradation rates in human body. Dry-wear and tribocorrosion in SBF were also evaluated in reciprocal ball-on-plate mode. According to the findings, MWCNTs induced several microstructural modifications in PEO coating such as formation of ~ 1 μm homogeneous dense barrier layer and irregular-shape porosities. Reinforcement significantly improved pitting corrosion resistance of the PEO coating, yielded a low friction coefficient and decreased wear-related damage by 60%. | |
dc.description.department | Depto. de Ingeniería Química y de Materiales | |
dc.description.faculty | Fac. de Ciencias Químicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN)/FEDER | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | Comunidad de Madrid/ FEDER | |
dc.description.sponsorship | National Science Foundation (INSF) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/70883 | |
dc.identifier.doi | 10.1016/j.surfin.2020.100850 | |
dc.identifier.issn | 2468-0230 | |
dc.identifier.officialurl | https://doi.org/10.1016/j.surfin.2021.101070 | |
dc.identifier.relatedurl | https://www.sciencedirect.com/science/article/pii/S2468023020308427 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/6877 | |
dc.journal.title | Surfaces and Interfaces | |
dc.language.iso | eng | |
dc.page.initial | 100850 | |
dc.publisher | Elsevier Science | |
dc.relation.projectID | PROFABRICAD (RTI2018-096391-B-C33) | |
dc.relation.projectID | (RYC-2017-21843) | |
dc.relation.projectID | ADITIMAT-CM (S2018/NMT-4411) | |
dc.relation.projectID | (Grant No. 97014179) | |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/3.0/es/ | |
dc.subject.cdu | 66.0 | |
dc.subject.cdu | 620 | |
dc.subject.keyword | Plasma electrolyte oxidation (PEO) | |
dc.subject.keyword | AZ31B Mg alloy | |
dc.subject.keyword | Multi-walled carbon nanotubes(MWCNTs) | |
dc.subject.keyword | Corrosion | |
dc.subject.keyword | Tribocorrosion | |
dc.subject.keyword | Quasi-in vivo | |
dc.subject.ucm | Ingeniería química | |
dc.subject.ucm | Materiales | |
dc.subject.unesco | 3303 Ingeniería y Tecnología Químicas | |
dc.subject.unesco | 3312 Tecnología de Materiales | |
dc.title | Biotribology and biocorrosion of MWCNTs-reinforced PEO coating on AZ31B Mg alloy | |
dc.type | journal article | |
dc.volume.number | 22 | |
dcterms.references | [1] M. Chagnon, L.G. Guy, N. Jackson Evaluation of Magnesium-based Medical devices in preclinical studies: challenges and points to consider Toxicol. Pathol., 47 (3) (2019), pp. 390-400 View PDFCrossRefView Record in ScopusGoogle Scholar [2] ... H. Yang, B. Jia, Z. Zhang, X. Qu, G. Li, W. Lin, Y. Zheng Alloying design of biodegradable zinc as promising bone implants for load-bearing applications Nat. Commun., 11 (1) (2020), pp. 1-16 Google Scholar [3] ... C. Zhang, J. Lin, N.Y.T. Nguyen, Y. Guo, C. Xu, C. Seo, H. Liu Antimicrobial bioresorbable Mg–Zn–Ca Alloy for bone repair in a comparison study with Mg–Zn–Sr alloy and pure Mg ACS Biomater. Sci. Eng., 6 (1) (2019), pp. 517-538 Google Scholar [4] G. Song, D. StJohn The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ J. Light Metals, 2 (1) (2002), pp. 1-16 ArticleDownload PDFGoogle Scholar [5] T.S. Narayanan, I.S. Park, M.H. Lee Surface modification of magnesium and its alloys for biomedical applications: opportunities and challenges Surface Modification of Magnesium and its Alloys for Biomedical Applications, Woodhead Publishing (2015), pp. 29-87 ArticleDownload PDFView Record in ScopusGoogle Scholar [6] M. Rahmati, K. Raeissi, M.R. Toroghinejad, A. Hakimizad, M. Santamaria Effect of pulse current mode on microstructure, composition and corrosion performance of the coatings produced by plasma electrolytic oxidation on AZ31 Mg alloy Coatings, 9 (10) (2019), p. 688 View PDFCrossRefView Record in ScopusGoogle Scholar [7] ... E. Matykina, I. Garcia, R. Arrabal, M. Mohedano, B. Mingo, J. Sancho, A. Pardo Role of PEO coatings in long-term biodegradation of a Mg alloy Appl. Surf. Sci., 389 (2016), pp. 810-823 ArticleDownload PDFView Record in ScopusGoogle Scholar [8] L. Chang, L. Tian, W. Liu, X. Duan Formation of dicalcium phosphate dihydrate on magnesium alloy by micro-arc oxidation coupled with hydrothermal treatment Corros. Sci., 72 (2013), pp. 118-124 ArticleDownload PDFGoogle Scholar [9] Y. Gu, C.F. Chen, S. Bandopadhyay, C. Ning, Y. Zhang, Y. Guo Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid Appl. Surf. Sci., 258 (16) (2012), pp. 6116-6126 ArticleDownload PDFView Record in ScopusGoogle Scholar [10] H.F. Guo, M.Z. An, H.B. Huo, S. Xu, L.J. Wu Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions Appl. Surf. Sci., 252 (22) (2006), pp. 7911-7916 ArticleDownload PDFView Record in ScopusGoogle Scholar [11] Y.K. Lee, K. Lee, T. Jung Study on microarc oxidation of AZ31B magnesium alloy in alkaline metal silicate solution Electrochem. Commun., 10 (11) (2008), pp. 1716-1719 ArticleDownload PDFView Record in ScopusGoogle Scholar [12] D.J. Kim, M.J. Kim, J.S. Kim, H.P. Kim Material characteristics of Ni–P–B electrodeposits obtained from a sulfamate solution Surf. Coat. Technol., 202 (12) (2008), pp. 2519-2526 ArticleDownload PDFView Record in ScopusGoogle Scholar [13] G. Yan, W. Guixiang, D. Guojun, G. Fan, Z. Lili, Z. Milin Corrosion resistance of anodized AZ31 Mg alloy in borate solution containing titania sol J. Alloys Compd., 463 (1–2) (2008), pp. 458-461 ArticleDownload PDFView Record in ScopusGoogle Scholar [14] Y. Wang, M. Chen, Y. Zhao Preparation and corrosion resistance of microarc oxidation-coated biomedical Mg–Zn–Ca alloy in the silicon–phosphorus-mixed electrolyte ACS Omega, 4 (25) (2019), pp. 20937-20947 View PDFCrossRefView Record in ScopusGoogle Scholar [15] P.S. Prakash, S.J. Pawar, R.P. Tewari Synthesis, characterization, and coating of forsterite (Mg2SiO4) based material over medical implants: a review Proc. Inst. Mech. Eng. Part L, 233 (6) (2019), pp. 1227-1240 View PDFCrossRefView Record in ScopusGoogle Scholar [16] ... W. Liu, Y. Liu, Y. Lin, Z. Zhang, S. Feng, M. Talha, T. Shi Effects of graphene on structure and corrosion resistance of plasma electrolytic oxidation coatings formed on D16T Al alloy Appl. Surf. Sci., 475 (2019), pp. 645-659 ArticleDownload PDFView Record in ScopusGoogle Scholar [17] H. NasiriVatan, R. Ebrahimi-Kahrizsangi, M.K. Asgarani Tribological performance of PEO-WC nanocomposite coating on Mg alloys deposited by plasma electrolytic oxidation Tribol. Int., 98 (2016), pp. 253-260 ArticleDownload PDFView Record in ScopusGoogle Scholar [18] M. Atapour, C. Blawert, M.L. Zheludkevich The wear characteristics of CeO2 containing nanocomposite coating made by aluminate-based PEO on AM50 magnesium alloy Surf. Coat. Technol., 357 (2019), pp. 626-637 ArticleDownload PDFView Record in ScopusGoogle Scholar [19] B. Yin, Z. Peng, J. Liang, K. Jin, S. Zhu, J. Yang, Z. Qiao Tribological behavior and mechanism of self-lubricating wear-resistant composite coatings fabricated by one-step plasma electrolytic oxidation Tribol Int, 97 (2016), pp. 97-107 ArticleDownload PDFView Record in ScopusGoogle Scholar [20] B. Pei, W. Wang, N. Dunne, X. Li Applications of carbon nanotubes in bone tissue regeneration and engineering: superiority, concerns, current advancements, and prospects Nanomaterials, 9 (10) (2019), p. 1501 View PDFCrossRefView Record in ScopusGoogle Scholar [21] R. Ormsby, T. McNally, C. Mitchell, N. Dunne Influence of multiwall carbon nanotube functionality and loading on mechanical properties of PMMA/MWCNT bone cements J. Mater. Sci., 21 (8) (2010), pp. 2287-2292 View PDFCrossRefView Record in ScopusGoogle Scholar [22] A. Naqi, N. Abbas, N. Zahra, A. Hussain, S.Q. Shabbir Effect of multi-walled carbon nanotubes (MWCNTs) on the strength development of cementitious materials J. Mater. Res. Technol., 8 (1) (2019), pp. 1203-1211 ArticleDownload PDFView Record in ScopusGoogle Scholar [23] X. Luo, C. Matranga, S. Tan, N. Alba, X.T. Cui Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone Biomaterials, 32 (26) (2011), pp. 6316-6323 ArticleDownload PDFView Record in ScopusGoogle Scholar [24] A.A. Farag Applications of nanomaterials in corrosion protection coatings and inhibitors Corros. Rev., 38 (1) (2020), pp. 67-86 View PDFCrossRefView Record in ScopusGoogle Scholar [25] P. Tripathi, P.K. Katiyar, J. Ramkumar, K. Balani Synergistic role of carbon nanotube and yttria stabilised zirconia reinforcement on wear and corrosion resistance of Cr-based nano-composite coatings Surf. Coat. Technol., 385 (2020), Article 125381 ArticleDownload PDFView Record in ScopusGoogle Scholar [26] E.P. Koumoulos, C.A. Charitidis Lubricity assessment, wear and friction of CNT-based structures in nanoscale Lubricants, 5 (2) (2017), p. 18 View PDFCrossRefView Record in ScopusGoogle Scholar [27] K.M. Lee, Y.G. Ko, D.H. Shin Incorporation of multi-walled carbon nanotubes into the oxide layer on a 7075 Al alloy coated by plasma electrolytic oxidation: coating structure and corrosion properties Curr. Appl. Phys., 11 (4) (2011), pp. S55-S59 ArticleDownload PDFView Record in ScopusGoogle Scholar [28] K.M. Lee, J.O. Jo, E.S. Lee, B. Yoo, D.H. Shin Incorporation of carbon nanotubes into oxide layer on 7075 Al alloy by plasma electrolytic oxidation J. Electrochem. Soc., 158 (10) (2011), p. C325 View PDFCrossRefView Record in ScopusGoogle Scholar [29] S.K. Yazıcı, F. Muhaffel, M. Baydogan Effect of incorporating carbon nanotubes into electrolyte on surface morphology of micro arc oxidized Cp-Ti Appl. Surf. Sci., 318 (2014), pp. 10-14 ArticleDownload PDFView Record in ScopusGoogle Scholar [30] Y. Yürektürk, F. Muhaffel, M. Baydoğan Characterization of micro arc oxidized 6082 aluminum alloy in an electrolyte containing carbon nanotubes Surf. Coat. Technol., 269 (2015), pp. 83-90 ArticleDownload PDFView Record in ScopusGoogle Scholar [31] M. Sabouri, S.M. Khoei Plasma electrolytic oxidation in the presence of multiwall carbon nanotubes on aluminum substrate: morphological and corrosion studies Surf. Coat. Technol., 334 (2018), pp. 543-555 ArticleDownload PDFView Record in ScopusGoogle Scholar [32] M. Hwang, W. Chung Effects of a carbon nanotube additive on the corrosion-resistance and heat-dissipation properties of plasma electrolytic oxidation on AZ31 magnesium alloy Materials, 11 (12) (2018), p. 2438 View PDFCrossRefView Record in ScopusGoogle Scholar [33] F. Živić, N. Grujović, G. Manivasagam, C. Richards, J. Landoulsi, V. Petrović The potential of magnesium alloys as bioabsorbable/biodegradable implants for biomedical applications Tribol. Ind., 36 (1) (2014) Google Scholar [34] M. Azzi, J.E. Klemberg-Sapieha Tribocorrosion test protocols for sliding contacts Tribocorrosion of Passive Metals and Coatings, Woodhead Publishing (2011), pp. 222-238 ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar [35] K. Kumar, R.S. Gill, U. Batra Challenges and opportunities for biodegradable magnesium alloy implants Mater. Technol., 33 (2) (2018), pp. 153-172 View Record in ScopusGoogle Scholar [36] Q. Li, J. Liang, Q. Wang Plasma electrolytic oxidation coatings on lightweight metals Mod. Surf. Eng. Treat., 4 (2013), p. 75 ArticleDownload PDFGoogle Scholar [37] T. Kokubo Bioactive glass ceramics: properties and applications Biomaterials, 12 (2) (1991), pp. 155-163 ArticleDownload PDFView Record in ScopusGoogle Scholar [38] Y.R. Duan, Z. Yao, C.Y. Wang, J.Y. Chen, X.D. Zhang A study of bone-like apatite formation on porous calcium phosphate ceramics in dynamic SBF Sheng wu yi xue gong cheng xue za zhi= Journal of biomedical engineering= Shengwu yixue gongchengxue zazhi, 19 (3) (2002), p. 365 View Record in ScopusGoogle Scholar [39] E. Matykina, R. Arrabal, A. Pardo, M. Mohedano, B. Mingo, I. Rodríguez, J. González Energy-efficient PEO process of aluminium alloys Mater Lett, 127 (2014), pp. 13-16 ArticleDownload PDFView Record in ScopusGoogle Scholar [40] R.O. Hussein, D.O. Northwood, X. Nie Coating growth behavior during the plasma electrolytic oxidation process J. Vac. Sci. Technol. A, 28 (4) (2010), pp. 766-773 View PDFCrossRefView Record in ScopusGoogle Scholar [41] C.S. Dunleavy, I.O. Golosnoy, J.A. Curran, T.W. Clyne Characterisation of discharge events during plasma electrolytic oxidation Surf. Coat. Technol., 203 (22) (2009), pp. 3410-3419 ArticleDownload PDFView Record in ScopusGoogle Scholar [42] M. Moghaddari, F. Yousefi, S. Aparicio, S.M. Hosseini Thermal conductivity and structuring of multiwalled carbon nanotubes based nanofluids J. Mol. Liq. (2020), Article 112977 ArticleDownload PDFView Record in ScopusGoogle Scholar [43] J.M. Albella, I. Montero, J.M. Martinez-Duart, V. Parkhutik Dielectric breakdown processes in anodic Ta2O5 and related oxides J. Mater. Sci., 26 (13) (1991), pp. 3422-3432 View Record in ScopusGoogle Scholar [44] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey Plasma electrolysis for surface engineering Surf. Coat. Technol., 122 (2–3) (1999), pp. 73-93 ArticleDownload PDFGoogle Scholar [45] M. Yazdimamaghani, M. Razavi, D. Vashaee, K. Moharamzadeh, A.R. Boccaccini, L. Tayebi Porous magnesium-based scaffolds for tissue engineering Mater. Sci. Eng. C, 71 (2017), pp. 1253-1266 ArticleDownload PDFView Record in ScopusGoogle Scholar [46] L.G. Bland, J.M. Fitz-Gerald, J.R. Scully Metallurgical and electrochemical characterization of the corrosion of AZ31B-H24 tungsten inert gas weld: isolated weld zones Corrosion, 72 (9) (2016), pp. 1116-1132 View PDFCrossRefView Record in ScopusGoogle Scholar [47] J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier Evaluating the characteristics of multiwall carbon nanotubes Carbon, 49 (8) (2011), pp. 2581-2602 ArticleDownload PDFView Record in ScopusGoogle Scholar [48] C. Blawert, S.P. Sah, N. Scharnagl, M.B. Kannan Plasma electrolytic oxidation/micro-arc oxidation of magnesium and its alloys Surface Modification of Magnesium and its Alloys for Biomedical Applications, Woodhead Publishing (2015), pp. 193-234 ArticleDownload PDFView Record in ScopusGoogle Scholar [49] E. Matykina, F. Monfort, A. Berkani, P. Skeldon, G.E. Thompson, J. Gough Characterization of spark-anodized titanium for biomedical applications J. Electrochem. Soc., 154 (6) (2007), p. C279 View PDFCrossRefView Record in ScopusGoogle Scholar [50] H.Q. Sun, Y.N. Shi, M.X. Zhang Wear behaviour of AZ91D magnesium alloy with a nanocrystalline surface layer Surf. Coat. Technol., 202 (13) (2008), pp. 2859-2864 ArticleDownload PDFView Record in ScopusGoogle Scholar [51] R.O. Hussein, X. Nie, D.O. Northwood Plasma electrolytic oxidation coatings on Mg alloys for improved wear and corrosion resistance Corrosion, 99 (2017), pp. 133-134 View PDFCrossRefView Record in ScopusGoogle Scholar [52] J. Dai, X. Zhang, Q. Yin, S. Ni, Z. Ba, Z. Wang Friction and wear behaviors of biodegradable Mg-6Gd-0.5 Zn-0.4 Zr alloy under simulated body fluid condition J. Magnes Alloys, 5 (4) (2017), pp. 448-453 ArticleDownload PDFView Record in ScopusGoogle Scholar [53] ... L. Pezzato, D. Vranescu, M. Sinico, C. Gennari, A.G. Settimi, P. Pranovi, M. Dabalà Tribocorrosion properties of PEO coatings produced on AZ91 magnesium alloy with silicate-or phosphate-based electrolytes Coatings, 8 (6) (2018), p. 202 View PDFView Record in ScopusGoogle Scholar [54] R. Arrabal, J.M. Mota, A. Criado, A. Pardo, M. Mohedano, E. Matykina Assessment of duplex coating combining plasma electrolytic oxidation and polymer layer on AZ31 magnesium alloy Surf. Coat. Technol., 206 (22) (2012), pp. 4692-4703 ArticleDownload PDFView Record in ScopusGoogle Scholar [55] P.B. Srinivasan, J. Liang, C. Blawert, M. Störmer, W. Dietzel Effect of current density on the microstructure and corrosion behavior of plasma electrolytic oxidation treated AM50 magnesium alloy Appl. Surf. Sci., 255 (7) (2009), pp. 4212-4218 View Record in ScopusGoogle Scholar [56] N.M. Chelliah, P. Padaikathan, R. Kumar Evaluation of electrochemical impedance and biocorrosion characteristics of as-cast and T4 heat treated AZ91 Mg-alloys in Ringer’s solution J. Magnes. Alloys, 7 (1) (2019), pp. 134-143 ArticleDownload PDFView Record in ScopusGoogle Scholar [57] A. Bordbar-Khiabani, S. Ebrahimi, B. Yarmand In-vitro corrosion and bioactivity behavior of tailored calcium phosphate-containing zinc oxide coating prepared by plasma electrolytic oxidation Corros. Sci. (2020), Article 108781 ArticleDownload PDFView Record in ScopusGoogle Scholar [58] G.E.J. Poinern, S. Brundavanam, D. Fawcett Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant Am. J. Biomed. Eng., 2 (6) (2012), pp. 218-240 View Record in ScopusGoogle Scholar [59] M. Decup, D. Malec, V. Bley Impact of a surface laser treatment on the dielectric strength of α-alumina J. Appl. Phys., 106 (9) (2009), Article 094103 View PDFCrossRefView Record in ScopusGoogle Scholar [60] P.T. Dalla, I.K. Tragazikis, D.A. Exarchos, K.G. Dassios, N.M. Barkoula, T.E. Matikas Effect of carbon nanotubes on chloride penetration in cement mortars Appl. Sci., 9 (5) (2019), p. 1032 View PDFCrossRefView Record in ScopusGoogle Scholar | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 160ef5bd-2d04-4f6c-b028-cb7ce4cf8d38 | |
relation.isAuthorOfPublication | 6a953ac5-3b84-40fc-a995-2a00ac938151 | |
relation.isAuthorOfPublication | 427b12dd-40e9-49e6-a8fe-d41e79a056ff | |
relation.isAuthorOfPublication.latestForDiscovery | 160ef5bd-2d04-4f6c-b028-cb7ce4cf8d38 |
Download
Original bundle
1 - 1 of 1