Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Stochastic thermodynamics of hidden pumps

dc.contributor.authorEsposito, Massimiliano
dc.contributor.authorRodríguez Parrondo, Juan Manuel
dc.date.accessioned2023-06-18T06:46:26Z
dc.date.available2023-06-18T06:46:26Z
dc.date.issued2015-05-11
dc.description© 2015 American Physical Society. M.E. is supported by the National Research Fund, Luxembourg in the frame of project FNR/A11/02. J.M.R.P. acknowledges financial support from Grant ENFASIS (No. FIS2011-22644, Spanish Government). This work also benefited from the COST Action Grant No. MP1209.
dc.description.abstractWe show that a reversible pumping mechanism operating between two states of a kinetic network can give rise to Poisson transitions between these two states. An external observer, for whom the pumping mechanism is not accessible, will observe a Markov chain satisfying local detailed balance with an emerging effective force induced by the hidden pump. Due to the reversibility of the pump, the actual entropy production turns out to be lower than the coarse-grained entropy production estimated from the flows and affinities of the resulting Markov chain. Moreover, in presence of a large time scale separation between the fast-pumping dynamics and the slow-network dynamics, a finite current with zero dissipation may be produced. We make use of these general results to build a synthetase-like kinetic scheme able to reversibly produce high free-energy molecules at a finite rate and a rotatory motor achieving 100% efficiency at finite speed.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipNational Research Fund, Luxemburgo
dc.description.sponsorshipGobierno de España
dc.description.sponsorshipEuropean Cooperation in Science and Technology (COST)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32932
dc.identifier.doi10.1103/PhysRevE.91.052114
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.91.052114
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24127
dc.issue.number5
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.page.final052114_7
dc.page.initial052114_1
dc.publisherAmerican Physical Society
dc.relation.projectIDFNR/A11/02
dc.relation.projectIDENFASIS FIS2011-22644
dc.relation.projectIDMP1209
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.keywordSystems
dc.subject.keywordEntropy
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleStochastic thermodynamics of hidden pumps
dc.typejournal article
dc.volume.number91
dcterms.references[1] T. H. Hill, Free Energy Transduction and Biochemical Cycle Kinetics (Academic Press, New York, 1977). [2] J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976). [3] K. Sekimoto, Stochastic Energetics (Springer, Berlin, 2010). [4] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012). [5] X.-J. Zhang, H. Qian, and M. Qian, Phys. Rep. 510, 1 (2012). [6] C. Van den Broeck and M. Esposito, Physica A 418, 6 (2015). [7] J. M. P. Parrondo and B. J. de Cisneros, Appl. Phys. A 75, 179 (2002). [8] A. W. C. Lau, D. Lacoste, and K. Mallick, Phys. Rev. Lett. 99, 158102 (2007). [9] U. Seifert, Eur. Phys. J. E 34, 26 (2011). [10] P. Gaspard and E. Gerritsma, J. Theor. Biol. 247, 672 (2007). [11] S. Rahav and C. Jarzynski, J. Stat. Mech. (2007) P09012. [12] A. Gomez-Marin, J. M. R. Parrondo, and C. Van den Broeck, Phys. Rev. E 78, 011107 (2008). [13] A. Puglisi, S. Pigolotti, L. Rondoni, and A. Vulpiani, J. Stat. Mech. (2010) P05015. [14] G. Bulnes Cuetara, M. Esposito, and P. Gaspard, Phys. Rev. B 84, 165114 (2011). [15] G. Bulnes Cuetara, M. Esposito, G. Schaller, and P. Gaspard, Phys. Rev. B 88, 115134 (2013). [16] G. Diana and M. Esposito, J. Stat. Mech. (2014) P04010. [17] J. Mehl, B. Lander, C. Bechinger, V. Blickle, and U. Seifert, Phys. Rev. Lett. 108, 220601 (2012). [18] T. Leonard, B. Lander, U. Seifert, and T. Speck, J. Chem. Phys. 139, 204109 (2013). [19] B. Altaner and J. Vollmer, Phys. Rev. Lett. 108, 228101 (2012). [20] J. M. Horowitz, T. Sagawa, and J. M. R. Parrondo, Phys. Rev. Lett. 111, 010602 (2013). [21] S. Bo and A. Celani, J. Stat. Phys. 154, 1325 (2014). [22] R. Kawai, J. M. R. Parrondo, and C. Van den Broeck, Phys. Rev. Lett. 98, 080602 (2007). [23] M. Esposito, Phys. Rev. E 85, 041125 (2012). [24] E. Roldán and J. M. R. Parrondo, Phys. Rev. Lett. 105, 150607 (2010). [25] E. Roldán and J. M. R. Parrondo, Phys. Rev. E 85, 031129 (2012). [26] S. Muy, A. Kundu, and D. Lacoste, J. Chem. Phys. 139, 124109 (2013). [27] A. Celani, S. Bo, R. Eichhorn, and E. Aurell, Phys. Rev. Lett. 109, 260603 (2012). [28] K. Kawaguchi and Y. Nakayama, Phys. Rev. E 88, 022147 (2013). [29] J. M. R. Parrondo, Phys. Rev. E 57, 7297 (1998). [30] R. D. Astumian and I. Der´enyi, Phys. Rev. Lett. 86, 3859 (2001). [31] R. D. Astumian, Phys. Rev. Lett. 91, 118102 (2003). [32] R. D. Astumian, Proc. Natl. Acad. Sci. USA 104, 19715 (2007). [33] N. A. Sinitsyn and I. Nemenman, Euro. Phys. Lett. 77, 58001 (2007). [34] S. Rahav, J. Horowitz, and C. Jarzynski, Phys. Rev. Lett. 101, 140602 (2008). [35] P. Gaspard, J. Stat. Phys. 117, 599 (2004). [36] S. Deffner and C. Jarzynski, Phys. Rev. X 3, 041003 (2013).
dspace.entity.typePublication
relation.isAuthorOfPublication03f52481-0af3-4e8d-bfb1-c47751e8fea5
relation.isAuthorOfPublication.latestForDiscovery03f52481-0af3-4e8d-bfb1-c47751e8fea5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RParrondo 01 LIBRE.pdf
Size:
326.33 KB
Format:
Adobe Portable Document Format

Collections