Herramientas de cálculo de dosis para experimentos de protonterapia flash
dc.contributor.advisor | Sánchez Parcerisa, Daniel | |
dc.contributor.author | Molina Hernández, Miguel | |
dc.date.accessioned | 2023-06-17T10:17:26Z | |
dc.date.available | 2023-06-17T10:17:26Z | |
dc.date.defense | 2020-09 | |
dc.date.issued | 2020-09 | |
dc.description | Master Interuniversitario en Física Nuclear. Facultad de Ciencias Físicas. Curso 2019-2020. | |
dc.description.abstract | Este Trabajo de Fin de Master tiene como objetivo estudiar la terapia flash, una nueva técnica radioterapéutica con aplicaciones clínicas prometedoras que muestra una reducción impresionante de las toxicidades en el tejido normal. El trabajo introduce, en primer lugar, una investigación bibliográfica sobre la terapia con protones y artículos publicados recientemente sobre terapia flash. La investigación se centra en el desarrollo de herramientas de cálculo de dosis para protones de baja energía del Centro de Micro-análisis de Materiales (CMAM) de Madrid. Para reconstruir la distribución de dosis a partir de los logs de irradiación se ha implementado un algoritmo analítico de cálculo de dosis. Además, se han realizado simulaciones de Monte Carlo para la modelización del haz de protones del CMAM. | |
dc.description.abstract | The Master Thesis aims at studying flash therapy, a new radiotherapeutical technique with promising clinical applications showing an impressive reduction of toxicities in normal tissue. The work introduces, in the first place, a bibliographical research on proton therapy and recently published papers on flash therapy. The core of the research focuses on the development of dose calculation tools for low-energy protons at the Centro de Micro-analisis de Materiales (CMAM) of Madrid. In order to reconstruct the dose distribution from the irradiation logs, an analytical dose calculation algorithm has been implemented. Furthermore, Monte Carlo simulations have been performed for the commissioning of the CMAM proton beam. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | unpub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/63722 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/9164 | |
dc.language.iso | spa | |
dc.master.title | Física Nuclear | |
dc.page.total | 115 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 539.1 | |
dc.subject.keyword | Radioterapia | |
dc.subject.keyword | Cáncer | |
dc.subject.keyword | Prontoterapia | |
dc.subject.keyword | FLASH | |
dc.subject.keyword | Monte Carlo | |
dc.subject.keyword | TOPAS | |
dc.subject.keyword | Algoritmo analítico | |
dc.subject.keyword | Logs de irradiación | |
dc.subject.keyword | Radiotherapy | |
dc.subject.keyword | Cancer | |
dc.subject.keyword | Protontherapy | |
dc.subject.keyword | Analytical algorithm: Irradiation logs | |
dc.subject.ucm | Física nuclear | |
dc.subject.ucm | Ordenadores | |
dc.subject.ucm | Bioinformática | |
dc.subject.ucm | Oncología | |
dc.subject.unesco | 2207 Física Atómica y Nuclear | |
dc.subject.unesco | 1203 Ciencia de Los Ordenadores | |
dc.subject.unesco | 3201.01 Oncología | |
dc.title | Herramientas de cálculo de dosis para experimentos de protonterapia flash | |
dc.title.alternative | Tools for dose calculation in protontherapy flash experiments | |
dc.type | master thesis | |
dcterms.references | [ICRU 1982]. International Commission on Radiation Units and Measurements. ICRU Report 37, Stopping Powers for Electrons and Positrons. [Bethe 1930]. Bethe, H. A. 1930. “Zur theorie des durchgangs schneller korpuskularstrahlen durch materie”. Annalen der Physik 397.3, 325-400. [Bethe and Salpeter 1957]. Bethe, H. A., and E. E.Salpeter. 1957. Quantum Mechanics of One- and Two-Electron Atoms (New York).[Bloch 1933]. Bloch, F. 1933. “Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie”. Annalen der Physik 408.3, 285-320. [Blomquist et al. 2005]. Blomquist,E, G. Bjelkengren, and B. Glimelius. 2005. “The potential of proton beam radiation therapy in intracranial and ocular tumours”. Acta Oncologica 44.8, 862-870. [Bortfeld 1997]. Bortfeld, T. 1997. “An analytical approximation of the Bragg curve for therapeutic proton beams”. Medical physics 24.12, 2024-2033. [Bragg and Kleeman 1904]. Bragg W. H, Kleeman R. 1904. “On the ionization curves of radium”. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 48.8, 726- 738. [Chu 2006]. Chu, W. T. 2006. Overview of Light Ion Beam Therapy, Dose Reporting in Ion Beam Therapy, vol. I. AEA-TECDOC-1560 (Berkeley, CA: Lawrence Berkeley National Laboratory). [IBA 2015]. IBA White Paper. 2015. “Treating Pediatric tumors with proton therapy. Current practice, opportunities and challenges”. [Combs et al. 2010]. Combs, S. E., et al. 2010. “Particle therapy at the Heidelberg Ion Therapy Center (HIT) – Integrated research-driven university-hospital-based radiation oncology service in Heidelberg, Germany”. Radiotherapy and Oncology 95.1, 41-44. [García-Alejo 2020]. García-Alejo. R. 2020. https://itaccancer.es/es/noticias/que-es-la-arcoterapia- volumetrica-modulada-v-mat/. ITacCancer. [Gottschalk et al. 1993]. Gottschalk, B., et al. 1993. “Multiple Coulomb scattering of 160 MeV protons”. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 74.4, 467-490. [Haettner 2006]. Haettner, E,. 2006. Experimental study on carbon ion fragmentation in water using GSI theraphy beams (Stockholm: Royal Institute of Technology). [Highland 1975]. Highland, V. L. 1975. “Some practical remarks on multiple scattering”. Nuclear Instruments and Methods 129.2, 497-499. [IAEA 2008]. Relative Biological Effectivness In Ion Beam Therapy. Technical Report Series 461(International Atomic Energy Agency: Vienna). [Igaki et al. 2004]. Igaki, H., et al.2004. “Clinical results of proton beam therapy for skull base chordoma”. International Journal of Radiation Oncology, Biology, Physics 60.4, 1120-1126. [SI 1977]. International Bureau of Weights, and Measures. The International System of Units 330 (US Department of Commerce, National Bureau of Standards). [Gajewski 2020]. Gajewski J. 2020. Bragg Peak Analysis. https://www.mathworks.com/matlabcentral/fileexchange/63405-bragg-peak-analysis. MATLAB Central File Exchange. [Johns et al. 1983]. Johns, H. E., and J. R. Cunningham. 1983. The physics of radiology (Springfield, IL: Charles C. Thomas). [Lynch et al.1991]. Lynch, G. R., and O. I. Dahl. 1991. “Approximations to multiple Coulomb scattering”. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 58.1, 6-10. [Locke 2001]. Locke, J., et al. 2001. “Radiotherapy for epithelial skin cancer”. International Journal of Radiation Oncology,Biology, Physics 51.3, 748-755. [McMahon 2018]. McMahon, S. J. 2018. “The linear quadratic model: usage, interpretation and challenges”. Physics in Medicine & Biology 64.1, 01TR01 (24 pp.). [Moliere 1947]. Moliere, G. 1947. “Theorie der Streuung schneller geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb-Feld”. Zeitschrift für Naturforschung A 2.3, 133-145. [Moliere 1948]. Moliere, G. 1948.“Theorie der Streuung schneller geladener Teilchen II Mehrfach und Vielfachstreuung”. Zeitschrift für Naturforschung A 3.2, 78-97. [Paganetti et al. 2002]. Paganetti, H., et al. 2002“Relative biological effectiveness (RBE) values for proton beam therapy”. International Journal of Radiation Oncology, Biology, Physics 53.2, 407-421. [Paganetti 2012]. Paganetti, H., ed. 2012. Proton therapy physics (Milton: Chapman and Hall/CRC). [Podgorsak 2005]. Podgorsak, E. B. 2005. Radiation oncology physics (Vienna: International Atomic Energy Agency). [Sánchez-Parcerisa 2012]. Sánchez- Parcerisa, D. 2012. Experimental and computational investigation of water-to-air stopping power ratio for ion chamber dosimetry in carbon ion radiotherapy. Ph.D. Diss.Universität Heidelberg. [Sánchez-Parcerisa 2020]. Sánchez-Parcerisa, D. 2020. “Seminario de protonterapia”. Física Nuclear Aplicada II. Master Interuniversitario en Física Nuclear (Madrid). [Slater et al. 2004]. Slater, J. D., et al. 2004. “Proton therapy for prostate cancer: the initial Loma Linda University experience”. International Journal of Radiation Oncology, Biology, Physics 59.2, 348-352. [Thomas 1994]. Thomas, E. W. 1994. “Stopping Powers and Ranges for Protons and Alpha Particles”. Health Physics 66,352-352. [Weber et al. 2006]. Weber, D. C., et al. 2006. “Radiation therapy planning with photons and protons for early and advanced breast cancer: an overview”. Radiation Oncology 1.1, 22. [Gottschalk 2004]. Gottschalk, B. 2004. Passive beam spreading in proton radiation therapy. Draft: http://huhepl.harvard.edu/~gottschalk (University of Harvard). [Paganetti 2012]. Paganetti, H., ed. 2012. Proton therapy physics (Milton: Chapman and Hall/CRC). [Podgorsak 2005]. Podgorsak, E. B. 2005. Radiation oncology physics (Vienna: International Atomic Energy Agency). [Sánchez-Parcerisa 2012]. Sánchez-Parcerisa, D. 2012. Experimental and computational investigation of water-to-air stopping power ratio for ion chamber dosimetry in carbon ion radiotherapy. Ph.D.Diss. Universität Heidelberg. [Sánchez-Parcerisa 2020]. Sánchez-Parcerisa, D. 2020. “Seminario de protonterapia”. Física Nuclear Aplicada II. Master Interuniversitario en Física Nuclear (Madrid). [Berry et al. 1969]. Berry, R. J., et al. 1969. “Survival of mammalian cells exposed to X rays at ultra-high dose-rates”. The British Journal of Radiology 42.494, 102-107. [Bourhis et al. 2019]. Bourhis, J. et al. 2019. “Treatment of a first patient with FLASH- radiotherapy”. Radiotherapy and Oncology 139, 18-22. [Buonanno et al. 2019]. Buonanno, M., V. Grilj, and D. J. Brenner. 2019. “Biological effects in normal cells exposed to FLASH dose rate protons”. Radiotherapy and Oncology 139, 51-55. [Čerenkov 1937]. Čerenkov, P. A. 1937. “Visible radiation produced by electrons moving in a medium with velocities exceeding that of light”. Physical Review 52.4, 378. [Dewey 1969]. Dewey, D. L. 1969. “An oxygen-dependent X-ray dose-rate effect in Serratia marcescens”. Radiation Research 38.3, 467-474[Diffenderfer et al. 2020]. Diffenderfer, E. S., et al. 2020. “Design, Implementation, and in Vivo Validation of a Novel Proton FLASH Radiation Therapy System”. International Journal of Radiation Oncology, Biology, Physics 106.2, 440-448. [Durante et al. 2018] Durante, M., E. Bräuer-Krisch, and M. Hill. 2018. “Faster and safer? FLASH ultra-high dose rate in radiotherapy”. The British Journal of Radiology 91.1082, 20170628. [Eling et al. 2019]. Eling, L. et al. 2019. “Ultra high dose rate Synchrotron Microbeam Radiation Therapy. Preclinical evidence in view of a clinical transfer”. Radiotherapy and Oncology 139, 56- 61. [Epp et al. 1972]. Epp, E. R., et al. 1972. “The radiosensitivity of cultured mammalian cells exposed to single high intensity pulses of electrons in various concentrations of oxygen”. Radiation Research 52.2, 324-332. [Favaudon et al. 2014]. Favaudon, V., et al. 2014. “Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice”. Science translational medicine 6.245, 245ra93. [Favaudon et al. 2019]. Favaudon, V., et al. 2019. “Time- resolved dosimetry of pulsed electron beams in very high dose-rate, FLASH irradiation for radiotherapy preclinical studies”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 944, 162537. [Field and Beweley 1974]. Field, S. B., and D. K. Bewley. 1974. “Effects of dose-rate on the radiation response of rat skin”. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine 26.3, 259-267.[Fouillade et al. 2020]. Fouillade, C., et al. 2020. “FLASH irradiation spares lung progenitor cells and limits the incidence of radio-induced senescence”. Clinical Cancer Research 26.6, 1497-1506. [Hendry et al. 1982]. Hendry, J. H., et al. 1982. “The constant low oxygen concentration in all the target cells for mouse tail radionecrosis”. Radiation research 92.1, 172-181. [Jaccard et al. 2017]. Jaccard, M., et al. 2017. “High dose‐per‐pulse electron beam dosimetry: Usability and dose‐rate independence of EBT3 Gafchromic films”. Medical physics 44.2, 725- 735. [Jaccard et al. 2018]. Jaccard, M., et al. 2018. “High dose‐per‐pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use”. Medical physics 45.2, 863-874. [Jorge et al. 2019]. Jorge, P. G., et al. 2019. “Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate”. Radiotherapy and Oncology 139, 34-39. [Lempart et al. 2019]. Lempart, M., et al. “Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation”. Radiotherapy and Oncology 139, 40-45. [Montay-Gruel et al. 2017]. Montay-Gruel, P.,et al. 2017. “Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s”. Radiotherapy and Oncology 124.3, 365-369. [Montay-Gruel et al. 2018]. Montay-Gruel, P., et al. 2018. “X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice”. Radiotherapy and Oncology 129.3, 582-588. [Patriarca et al. 2018]. Patriarca, A., et al. 2018. “Experimental set-up for FLASH proton irradiation of small animals using a clinical system”. International Journal of Radiation Oncology, Biology, Physics 102.3, 619-626. [Petersson et al. 2017]. Petersson, K., et al. 2017. “High dose‐per‐pulse electron beam dosimetry— A model to correct for the ion recombination in the Advanced Markus ionization chamber”. Medical Physics 44.3, 1157-1167. [Pratx and Kapp 2019]. Pratx, G., and D. S. Kapp. 2019. “A computational model of radiolytic oxygen depletion during FLASH irradiation and its effect on the oxygen enhancement ratio”. Physics in Medicine & Biology 64.18, 185005. [Sánchez-Tembleque et al. 2019] Sánchez-Tembleque, Víctor, et al. 2019. “Simultaneous measurement of the spectral and temporal properties of a LINAC pulse from outside the treatment room”. Radiation Physics and Chemistry 158, 1-5. [Simmons et al. 2019]. Simmons, D. A., et al. 2019. “Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation”. Radiotherapy and Oncology 139, 4-10. [Schüler et al. 2017]. Schüler, E., et al. 2017. “Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator”. International Journal of Radiation Oncology, Biology, Physics 97.1, 195-203. [Schwartz and Hayes 2020]. Schwartz, D. L., and D. N. Hayes. “The Evolving Role of Radiotherapy for Head and Neck Cancer”. Hematology/Oncology Clinics 34.1, 91-108. [Spitz et al. 2019]. Spitz, D. R., et al. 2019. “An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses”. Radiotherapy and Oncology 139, 23-27. [Town 1967]. Town, C. D. “Effect of high dose rates on survival of mammalian cells”. Nature 215.5103, 847-848. [Vozenin et al. 2019]. Vozenin, M.C., et al. 2019. “The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients”. Clinical Cancer Research 25.1, 35-42. [Weiss et al. 1974]. Weiss, H., et al. 1974. “Oxygen depletion in cells irradiated at ultra-high dose- rates and at conventional dose-rates”. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine 26.1, 17-29. [Wilson et al. 2012]. Wilson, P., et al. 2012. “Revisiting the ultra-high dose rate effect: implications for charged particle radiotherapy using protons and light ions”. The British Journal of Radiology 85.1018, 933-939. [Enguita et al. 2004]. Enguita, O., et al. 2004. “The new external microbeam facility at the 5 MV Tandetron accelerator laboratory in Madrid: beam characterisation and first results”. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 219, 384-388. [Jaccard et al. 2017]. Jaccard, M., et al. 2017. “High dose‐per‐pulse electron beam dosimetry: Usability and dose‐rate independence of EBT3 Gafchromic films”. Medical Physics 44.2, 725- 735. [Jorge et al. 2019]. Jorge, P. G., et al. 2019.“Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate”. Radiotherapy and Oncology 139, 34-39.[Sánchez-Parcerisa et al. 2014]. Sánchez-Parcerisa, D., et al. 2014. “FoCa: a modular treatment planning system for proton radiotherapy with research and educational purposes”. Physics in Medicine & Biology 59.23, 7341. [Sánchez-Parcerisa et al. 2020]. Sánchez-Parcerisa D, España S, Molina M., I. Sanz, Ibáñez P, Sánchez-Tembleque V, Onecha VV., C. Gutiérrez-Neira, Udías JM, Fraile LM. 2020. “Integrated positioning and treatment planning system for irradiation of biological samples with low-energy protons”. Physics in Medicine and Biology. In preparation. [Sanz, TFM, 2020]. Sanz, I.2020. Radiochromic film dosimetry for monitoring preclinical FLASH protontherapy experiments. Trabajo Fin de Máster en Física Biomédica. Universidad Complutense de Madrid. [Van de Water et al. 2019]. Van de Water, S., et al. 2019. “Towards FLASH proton therapy: the impact of treatment planning and machine characteristics on achievable dose rates”. Acta oncologica 58.1, 1463-1469. [Humphries 2013].Humphries, S., ed. 2013. Principles of charged particle acceleration (Newburyport:Dover Publications). [Jaccard et al. 2017]. Jaccard, M., et al. 2017. “High dose-per-pulse electron beam dosimetry: Usability and dose-rate independence of EBT3 Gafchromic films”. Medical Physics 44.2, 725- 735. [Low et al. 1998]. Low, D. A., et al. 1998. “A technique for the quantitative evaluation of dose distributions”. Medical Physics 25.5, 656-661. [Perl et al. 2012]. Perl, J., et al. 2012. “TOPAS: an innovative proton Monte Carlo platform for research and clinical applications”. Medical Physics 39.11, 6818-6837. [Sánchez-Parcerisa et al. 2014]. Sánchez-Parcerisa, D., et al. 2014. “FoCa: a modular treatment planning system for proton radiotherapy with research and educational purposes”. Physics in Medicine & Biology 59.23, 7341. | |
dspace.entity.type | Publication | |
relation.isAdvisorOfPublication | d228b73c-ba3b-487d-91bd-5f4e22cf9c00 | |
relation.isAdvisorOfPublication.latestForDiscovery | d228b73c-ba3b-487d-91bd-5f4e22cf9c00 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- TFM_HCDEPF_MOLINA_HERNANDEZ_MIGUEL_14-09-2020.pdf
- Size:
- 13.06 MB
- Format:
- Adobe Portable Document Format