The MetNet vehicle: a lander to deploy environmental stations for local and global investigations of Mars
Loading...
Download
Official URL
Full text at PDC
Publication date
2017
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Copernicus Gesellschaft MBH
Citation
Harri, A. M., Pichkadze, K., Zeleny, L. et al. «The MetNet Vehicle: A Lander to Deploy Environmental Stations for Local and Global Investigations of Mars». Geoscientific Instrumentation, Methods and Data Systems, vol. 6, n.o 1, febrero de 2017, pp. 103-24. DOI.org (Crossref), https://doi.org/10.5194/gi-6-103-2017.
Abstract
Investigations of global and related local phenomena on Mars such as atmospheric circulation patterns, boundary layer phenomena, water, dust and climatological cycles and investigations of the planetary interior would benefit from simultaneous, distributed in situ measurements. Practically, such an observation network would require low-mass landers, with a high packing density, so a large number of landers could be delivered to Mars with the minimum number of launchers.
The Mars Network Lander (MetNet Lander; MNL), a small semi-hard lander/penetrator design with a payload mass fraction of approximately 17 %, has been developed, tested and prototyped. The MNL features an innovative Entry, Descent and Landing System (EDLS) that is based on inflatable structures. The EDLS is capable of decelerating the lander from interplanetary transfer trajectories down to a surface impact speed of 50-70 ms(-1) with a deceleration of < 500 g for < 20 ms. The total mass of the prototype design is approximate to 24 kg, with approximate to 4 kg of mass available for the payload.
The EDLS is designed to orient the penetrator for a vertical impact. As the payload bay will be embedded in the surface materials, the bay's temperature excursions will be much less than if it were fully exposed on the Martian surface, allowing a reduction in the amount of thermal insulation and savings on mass.
The MNL is well suited for delivering meteorological and atmospheric instruments to the Martian surface. The payload concept also enables the use of other environmental instruments. The small size and low mass of a MNL makes it ideally suited for piggy-backing on larger spacecraft. MNLs are designed primarily for use as surface networks but could also be used as pathfinders for high-value landed missions.