Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Resource management for power-constrained HEVC transcoding using reinforcement learning

dc.contributor.authorCostero Valero, Luis María
dc.contributor.authorIranfar, Arman
dc.contributor.authorZapater, Marina
dc.contributor.authorAtienza, David
dc.contributor.authorOlcoz Herrero, Katzalin
dc.date.accessioned2023-06-16T15:23:07Z
dc.date.available2023-06-16T15:23:07Z
dc.date.issued2020-12-01
dc.description©2020 IEEE Computer Society This work was supported by the EU (FEDER) and Spanish MINECO (RTI2018-093684-B-I00), MECD (FPU15/02050), CM(S2018/TCS-4423), and UCM (PR65/19-22445), the ERC Consolidator Grant COMPUSAPIEN (GA No. 725657), the H2020 RECIPE project (GA No. 801137), and the H2020 DeepHealth project (GA No. 825111)
dc.description.abstractThe advent of online video streaming applications and services along with the users' demand for high-quality contents require High Efficiency Video Coding (HEVC), which provides higher video quality and more compression at the cost of increased complexity. On one hand, HEVC exposes a set of dynamically tunable parameters to provide trade-offs among Quality-of-Service (QoS), performance, and power consumption of multi-core servers on the video providers' data center. On the other hand, resource management of modern multi-core servers is in charge of adapting system-level parameters, such as operating frequency and multithreading, to deal with concurrent applications and their requirements. Therefore, efficient multi-user HEVC streaming necessitates joint adaptation of application- and system-level parameters. Nonetheless, dealing with such a large and dynamic design space is challenging and difficult to address through conventional resource management strategies. Thus, in this work, we develop a multi-agent Reinforcement Learning framework to jointly adjust application- and system-level parameters at runtime to satisfy the QoS of multi-user HEVC streaming in power-constrained servers. In particular, the design space, composed of all design parameters, is split into smaller independent sub-spaces. Each design sub-space is assigned to a particular agent so that it can explore it faster, yet accurately. The benefits of our approach are revealed in terms of adaptability and quality (with up to to 4x improvements in terms of QoS when compared to a static resource management scheme), and learning time (6 x faster than an equivalent mono-agent implementation). Finally, we show that the power-capping techniques formulated outperform the hardware-based power capping with respect to quality.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. Horizonte 2020
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.sponsorshipMinisterio de Educación, Cultura y Deporte (MECD)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/62156
dc.identifier.doi10.1109/TPDS.2020.3004735
dc.identifier.issn1045-9219
dc.identifier.officialurlhttp://dx.doi.org/10.1109/TPDS.2020.3004735
dc.identifier.relatedurlhttps://ieeexplore.ieee.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6543
dc.issue.number12
dc.journal.titleIEEE transactions on parallel and distributed systems
dc.language.isoeng
dc.page.final2850
dc.page.initial2834
dc.publisherIEEE Computer Society
dc.relation.projectIDCOMPUSAPIEN (725657); RECIPE (801137); DeepHealth (825111)
dc.relation.projectIDRTI2018-093684-B-I00
dc.relation.projectIDFPU15/02050
dc.relation.projectIDCABAHLA-CM (S2018/TCS-4423)
dc.relation.projectIDPR65/19-22445
dc.rights.accessRightsopen access
dc.subject.cdu004.8
dc.subject.keywordResource management
dc.subject.keywordDVFS
dc.subject.keywordPower capping
dc.subject.keywordReinforcement learning
dc.subject.keywordQ-learning
dc.subject.keywordHEVC
dc.subject.keywordSelf-adaptation
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleResource management for power-constrained HEVC transcoding using reinforcement learning
dc.typejournal article
dc.volume.number31
dspace.entity.typePublication
relation.isAuthorOfPublicationb2616c88-d3da-43df-86cb-3ced1084f460
relation.isAuthorOfPublication8cfc18ec-4816-404d-982d-21dc07318c07
relation.isAuthorOfPublication.latestForDiscoveryb2616c88-d3da-43df-86cb-3ced1084f460

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
olcoz25 postprint.pdf
Size:
1000.09 KB
Format:
Adobe Portable Document Format

Collections