Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Discovery of 5-{2-[5-Chloro-2-(5-ethoxyquinoline-8-sulfonamido)phenyl]ethynyl}-4-methoxypyridine-2-carboxylic Acid, a Highly Selective in Vivo Useable Chemical Probe to Dissect MCT4 Biology

Citation

Heinrich T, Sala-Hojman A, Ferretti R, Petersson C, Minguzzi S, Gondela A, et al. Discovery of 5-{2-[5-Chloro-2-(5-ethoxyquinoline-8-sulfonamido)phenyl]ethynyl}-4-methoxypyridine-2-carboxylic Acid, a Highly Selective in Vivo Useable Chemical Probe to Dissect MCT4 Biology. J Med Chem 2021;64:11904–33. https://doi.org/10.1021/acs.jmedchem.1c00448.

Abstract

Due to increased lactate production during glucose metabolism, tumor cells heavily rely on efficient lactate transport to avoid intracellular lactate accumulation and acidification. Monocarboxylate transporter 4 (MCT4/SLC16A3) is a lactate transporter that plays a central role in tumor pH modulation. The discovery and optimization of a novel class of MCT4 inhibitors (hit 9a), identified by a cellular screening in MDA-MB-231, is described. Direct target interaction of the optimized compound 18n with the cytosolic domain of MCT4 was shown after solubilization of the GFP-tagged transporter by fluorescence cross-correlation spectroscopy and microscopic studies. In vitro treatment with 18n resulted in lactate efflux inhibition and reduction of cellular viability in MCT4 high expressing cells. Moreover, pharmacokinetic properties of 18n allowed assessment of lactate modulation and antitumor activity in a mouse tumor model. Thus, 18n represents a valuable tool for investigating selective MCT4 inhibition and its effect on tumor biology.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections