Observation of a Mott insulating ground state for Sn/Ge(111) at low temperature

dc.contributor.authorCortes, R
dc.contributor.authorTejeda, A.
dc.contributor.authorLobo, J.
dc.contributor.authorDidiot, C.
dc.contributor.authorKierren, B.
dc.contributor.authorMalterre, D.
dc.contributor.authorMichel, E.G.
dc.contributor.authorMascaraque Susunaga, Arantzazu
dc.date.accessioned2023-06-20T10:50:08Z
dc.date.available2023-06-20T10:50:08Z
dc.date.issued2006-03-31
dc.description© 2006 The American Physical Society. We acknowledge financial support from MCyT (Spain) under Grants No. MAT2003-08627-C0201 and No. FIS2005-0747. A. M. thanks the program ‘‘Ramón y Cajal.’’ R. C. thanks ‘‘Comunidad de Madrid’’ and ‘‘Fondo Social Europeo.’’ Part of this work was performed at the Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland. STM images have been analyzed using WSxM software from Nanotec.
dc.description.abstractWe report an investigation on the properties of 0.33 ML of Sn on Ge(111) at temperatures down to 5 K. Low-energy electron diffraction and scanning tunneling microscopy show that the (3 x 3) phase formed at similar to 200 K, reverts to a new (root 3 x root 3)R30 degrees phase below 30 K. The vertical distortion characteristic of the (3 x 3) phase is lost across the phase transition, which is fully reversible. Angle-resolved photoemission experiments show that, concomitantly with the structural phase transition, a metal-insulator phase transition takes place. The (root 3 x root 3)R30 degrees ground state is interpreted as the formation of a Mott insulator for a narrow half-filled band in a two-dimensional triangular lattice.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMCyT (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28336
dc.identifier.doi10.1103/PhysRevLett.96.126103
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevLett.96.126103
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51309
dc.issue.number12
dc.journal.titlePhysical Review Letters
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDMAT2003-08627-C0201
dc.relation.projectIDFIS2005-0747
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordDynamical fluctuations
dc.subject.keywordSurface phase
dc.subject.keywordTransition
dc.subject.keywordPhotoemission
dc.subject.keywordSemiconductors
dc.subject.keywordDiamond
dc.subject.ucmFísica de materiales
dc.titleObservation of a Mott insulating ground state for Sn/Ge(111) at low temperature
dc.typejournal article
dc.volume.number96
dcterms.references[1] F. Gebhard, The Mott Metal-Insulator Transition (Springer, New York, 1997). [2] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998); M. Capone et al., Phys. Rev. Lett. 93, 047001 (2004); P. Limelette et al., Science 302, 89 (2003). [3] L. I. Johansson, F. Owman, and P. Martensson, Surf. Sci. 360, L478 (1996); J.-M. Themlin et al., Europhys. Lett. 39, 61 (1997). [4] H. H. Weitering et al., Phys. Rev. Lett. 78, 1331 (1997). [5] F. Flores et al., Prog. Surf. Sci. 67, 299 (2001). [6] G. Santoro, S. Scandolo, and E. Tosatti, Phys. Rev. B 59, 1891 (1999). [7] J. M. Carpinelli et al., Nature (London) 381, 398 (1996); Phys. Rev. Lett. 79, 2859 (1997). [8] J. Ortega, R. Pérez, and F. Flores, J. Phys. Condens. Matter 14, 5979 (2002) and references therein. [9] J. Avila et al., Phys. Rev. Lett. 82, 442 (1999). [10] R. I. G. Uhrberg and T. Balasubramanian, Phys. Rev. Lett. 81, 2108 (1998). [11] A (√(3 ) x3) R30º phase is also observed at room temperature, see Ref. [9]. [12] The energy/angle resolution is 9 meV=0:1 . [13] S. Yoshida et al., Phys. Rev. B 70, 235411 (2004). [14] R. M. Feenstra et al., Phys. Rev. B 71, 125316 (2005). [15] I. Brihuega et al., Phys. Rev. Lett. 95, 206102 (2005). [16] J. E. Demuth et al., Phys. Rev. Lett. 56, 1408 (1986). [17] M. Alonso, R. Cimino, and K. Horn, Phys. Rev. Lett. 64, 1947 (1990). [18] The shift observed at 30 K is the maximum possible, as calculated from sample doping and the change of the chemical potential and of the Ge band gap with temperature. [19] E. G. Michel et al., Phys. Rev. B 45, 11 811 (1992). [20] A larger SPV for the valence band is discarded, first because the shift detected exceeds the maximum value due to a change of the band bending only, and second because the photon flux used for probing the core levels is larger than for the valence band. [21] A. Damascelli, Z. Hussain, and Z. X. Shen, Rev. Mod. Phys. 75, 473 (2003). [22] L. Perfetti et al., Phys. Rev. Lett. 90, 166401 (2003). [23] X. Y. Zhang, M. J. Rozenberg, and G. Kotliar, Phys. Rev. Lett. 70, 1666 (1993). [24] G. Grüner, Density Waves in Solids (Addison-Wesley, Reading, MA, 1994). [25] D. Farias et al., Phys. Rev. Lett. 91, 016103 (2003). [26] A. Mascaraque et al., Phys. Rev. Lett. 82, 2524 (1999). [27] G. Dolling and R. A. Cowley, Proc. Phys. Soc. London 88, 463 (1966). [28] S. Biernacki and M. Scheffler, Phys. Rev. Lett. 63, 290 (1989). [29] J. Guo, J. Shi, and E. W. Plummer, Phys. Rev. Lett. 94, 036105 (2005).
dspace.entity.typePublication
relation.isAuthorOfPublication9d984e3c-69fb-476e-af0b-5134c4d26028
relation.isAuthorOfPublication.latestForDiscovery9d984e3c-69fb-476e-af0b-5134c4d26028

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mascaraque,A 27libre.pdf
Size:
1.67 MB
Format:
Adobe Portable Document Format

Collections