Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Modelling River Channel Formation

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorFowler, A.C.
dc.contributor.authorMuñoz, A.I.
dc.contributor.authorSchiavi, E.
dc.date.accessioned2023-06-20T10:52:10Z
dc.date.available2023-06-20T10:52:10Z
dc.date.issued2009
dc.description.abstractA coupled model describing the evolution of the topographic elevation and the depth of the overland water film is here studied when considering the overland flow of water over an erodible sediment. We complete the previous modelling of the problems by SMITH and BRETHERTON (1972) and FOWLER et al. (2007), obtaining a model which involves a degenerate nonlinear parabolic equation (satisfied on the interior of the support of the solution) with a super-linear source term and a prescribed constant mass. The degeneracy of the equation causes the channel width to be self-selecting. We propose here a global formulation of the problem, formulated in the whole space, beyond the support of the solution. An important feature of the model proposed here is that despite of the presence of the superlinear forcing term at the equation, a solution to it can not blow up thanks to the mass constraint.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30166
dc.identifier.officialurlhttp://www.unizar.es/acz/05Publicaciones/Monografias/MonografiasPublicadas/Monografia31/057.pdf
dc.identifier.relatedurlhttp://www.unizar.es/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51366
dc.journal.titleMonografías de la Real Academia de Ciencias de Zaragoza
dc.language.isoeng
dc.page.final66
dc.page.initial57
dc.publisher1132-6360
dc.rights.accessRightsopen access
dc.subject.cdu51
dc.subject.keywordRiver Models
dc.subject.keywordLandscape Evolution
dc.subject.keywordNonlinear parabolic equations
dc.subject.keywordFree boundaries
dc.subject.keywordsingular free boundary flux.
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.unesco12 Matemáticas
dc.titleModelling River Channel Formation
dc.typejournal article
dc.volume.number31
dcterms.referencesDÍAZ, J. I., FOWLER, A. C., MUÑOZ, A. I., SCHIAVI, 2008, Mathematical analysis of a Model of River Channel Formation. Pure and Applied Geophysics, Birkhäuser Verlag, Basel,165. DOI: 10.1007/s00024-004-0394-3 EVANS, L. C., GARIEPY, R. F., Measure Theory and Fine Properties of Functions, (Studies in Advanced Mathematics, CRC Press, Boca Raton, 1992) FOWLER, A. C., KOPTEVA, N., OAKLEY, C., (2007), The formation of river channels. SIAM J. Appl. Maths, 67, 1016–1040. LOEWENHERZ-LAWRENCE, D. S., (1994), Hydrodynamic description for advective sediment transport processes and rill initiation, Water Resour. Res. 30, 3203–3212. LOEWENHERZ-LAWRENCE, D. S., (1994), Hydrodynamic description for advective sediment transport processes and rill initiation. Water Resour. Res. 30, 3203–3212. MEYER-PETER, E., MULLER, R., (1948), Formulas for bed-load transport. Proc. Int. Assoc. Hydraul. Res., 3rd annual conference, Stockholm, 39–64. SAMARSKI, A. A., GALAKTIONOV, V. A., KURDYUMOV, S. P., MIKHAILOV, A. P., Blow-up in quasilinear. parabolic equations. (Walter de Gruyter, Berlin, 1995). SMITH, T. R., BRETHERTON, F. P., (1972), Stability and the conservation of mass in drainage basin evolution. Water Resour. Res., 8, 11, 1506–1529.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
164.pdf
Size:
123.61 KB
Format:
Adobe Portable Document Format

Collections