Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Identities induced by Riordan arrays

Loading...
Thumbnail Image

Full text at PDC

Publication date

2012

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Luzón, A., Alonso Morón, M., Merlini, D., Sprugnoli, R. «Identities Induced by Riordan Arrays». Linear Algebra and Its Applications, vol. 436, n.o 3, febrero de 2012, pp. 631-47. DOI.org (Crossref), https://doi.org/10.1016/j.laa.2011.08.007.

Abstract

Historically, there exist two versions of the Riordan array concept. The older one (better known as recursive matrix) consists of bi-infinite matrices (d(n,k)) (n,k is an element of Z) (k > n implies d(n,k) = 0), deals with formal Laurent series and has been mainly used to study algebraic properties of such matrices. The more recent version consists of infinite, lower triangular arrays (d(n,k)) (n,k is an element of N) (k > n implies d(n,k) = 0), deals with formal power series and has been used to study combinatorial problems. Here we show that every Riordan array induces two characteristic combinatorial sums in three parameters n, k, m is an element of Z. These parameters can he specialized and generate an indefinite number of other combinatorial identities which are valid in the hi-infinite realm of recursive matrices.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections