Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Blood glucose prediction using multi-objective grammatical evolution: analysis of the “agnostic” and “what-if” scenarios

dc.contributor.authorContador, Sergio
dc.contributor.authorColmenar, José Manuel
dc.contributor.authorGarnica Alcázar, Antonio Óscar
dc.contributor.authorVelasco Cabo, José Manuel
dc.contributor.authorHidalgo Pérez, José Ignacio
dc.date.accessioned2025-01-30T17:55:45Z
dc.date.available2025-01-30T17:55:45Z
dc.date.issued2021
dc.description.abstractIn this paper we investigate the benefits of applying a multi-objective approach for solving a symbolic regression problem by means of Grammatical Evolution. In particular, we extend previous work, obtaining mathematical expressions to model glucose levels in the blood of diabetic patients. Here we use a multi-objective Grammatical Evolution approach based on the NSGA-II algorithm, considering the root-mean-square error and an ad-hoc fitness function as objectives. This ad-hoc function is based on the Clarke Error Grid analysis, which is useful for showing the potential danger of mispredictions in diabetic patients. In this work, we use two datasets to analyse two different scenarios: What-if and Agnostic, the most common in daily clinical practice. In the What-if scenario, where future events are evaluated, results show that the multi-objective approach improves previous results in terms of Clarke Error Grid analysis by reducing the number of dangerous mispredictions. In the Agnostic situation, with no available information about future events, results suggest that we can obtain good predictions with only information from the previous hour for both Grammatical Evolution and Multi-Objective Grammatical Evolution.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipFundación Eugenio Rodríguez Pascual
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades(España)
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.identifier.citationContador, S., Colmenar, J.M., Garnica, O. et al. Blood glucose prediction using multi-objective grammatical evolution: analysis of the “agnostic” and “what-if” scenarios. Genet Program Evolvable Mach 23, 161–192 (2022). https://doi.org/10.1007/s10710-021-09424-6
dc.identifier.doi10.1007/S10710-021-09424-6
dc.identifier.officialurlhttps://doi.org/10.1007/S10710-021-09424-6
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117435
dc.journal.titleGenetic Programming and Evolvable Machines
dc.language.isoeng
dc.page.final192
dc.page.initial161
dc.publisherSpringer
dc.relation.projectIDinfo:eu-repo/grantAgreement/RTI2018-095180-B-I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/PGC2018-095322-B-C22
dc.relation.projectIDinfo:eu-repo/grantAgreement/B2017/BMD3773
dc.relation.projectIDinfo:eu-repo/grantAgreement/Y2018/NMT-4668
dc.relation.projectIDinfo:eu-repo/grantAgreement/P2018/TCS-4566
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu004
dc.subject.keywordGrammatical evolution
dc.subject.keywordMulti-objective optimization
dc.subject.keywordGlucose prediction
dc.subject.keywordDiabetes
dc.subject.ucmInformática (Informática)
dc.subject.unesco3314 Tecnología Médica
dc.titleBlood glucose prediction using multi-objective grammatical evolution: analysis of the “agnostic” and “what-if” scenarios
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number23
dspace.entity.typePublication
relation.isAuthorOfPublication33d1dfc8-7bd7-4f4d-ac77-e9c369e8d82e
relation.isAuthorOfPublicationce8731c7-a3bb-4010-98d9-e9b72622941b
relation.isAuthorOfPublication981f825f-2880-449a-bcfc-686b866206d0
relation.isAuthorOfPublication.latestForDiscovery33d1dfc8-7bd7-4f4d-ac77-e9c369e8d82e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s107).pdf
Size:
2.86 MB
Format:
Adobe Portable Document Format

Collections