Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Laser irradiation-induced α to δ phase transformation in Bi_2O_3 ceramics and nanowires.

dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.contributor.authorVila Santos, María
dc.contributor.authorDíaz-Guerra Viejo, Carlos
dc.date.accessioned2023-06-20T03:36:24Z
dc.date.available2023-06-20T03:36:24Z
dc.date.issued2012-08-13
dc.description©2012 American Institute of Physics. This work was supported by MICNN through projects MAT2009-07882 and CSD2009-0013.
dc.description.abstractThe α-Bi_2O_3 to δ-Bi_2O_3phase transformation has been locally induced by laser irradiation in ceramic samples and single-crystal nanowires of this oxide. The threshold power densities necessary to induce this transformation, as well as the corresponding transformation kinetics and its temporal stability, have been investigated in both kinds of samples by micro-Raman spectroscopy. The appearance of the δ phase was also monitored by spatially resolved photoluminescence spectroscopy. An emission band peaked near 1.67 eV, not observed in α-Bi_2O_3, is tentatively attributed to δ-Bi_2O_3 near band gap transitions.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICNN (Ministerio de Ciencia e Innovación, España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23628
dc.identifier.doi10.1063/1.4747198
dc.identifier.issn0003-6951
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.4747198
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44023
dc.issue.number7
dc.journal.titleApplied Physics Letters
dc.language.isoeng
dc.page.final1
dc.page.initial071905
dc.publisherAmer Inst Physics
dc.relation.projectIDMAT2009-07882
dc.relation.projectIDCSD2009-0013
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordThin-Films
dc.subject.keywordOptical-Properties
dc.subject.keywordOxide
dc.subject.keywordBismuthsesquioxide
dc.subject.keywordConductivity
dc.subject.keywordLuminescence
dc.subject.keywordAlpha-Bi_2O_3
dc.subject.keywordDisorder
dc.subject.keywordSpectra
dc.subject.ucmFísica de materiales
dc.titleLaser irradiation-induced α to δ phase transformation in Bi_2O_3 ceramics and nanowires.
dc.typejournal article
dc.volume.number101
dcterms.references1. A. Cabot, A. Marsal, J. Arbiol, and J. R. Morante, Sens. Actuators B 99, 74 (2004). http://dx.doi.org/10.1016/j.snb.2003.10.032 2. A. Hameed, T. Montini, V. Gombac, and P. Fornasiero, J. Am. Chem. Soc. 130, 9658 (2008). http://dx.doi.org/10.1021/ja803603y 3. L. Leontie, M. Caraman, M. Delibas, and G. I. Rusu, Mater. Res. Bull. 36, 1629 (2001). http://dx.doi.org/10.1016/S0025-5408(01)00641-9 4. H. A. Harwig, Z. Anorg. Allg. Chem. 444, 151 (1978). http://dx.doi.org/10.1002/zaac.19784440118 5. H. A. Harwig and J. W. Weenk, Z. Anorg. Allg. Chem. 444, 167 (1978). http://dx.doi.org/10.1002/zaac.19784440119 6. N. M. Sammes, G. A. Tompsett, H. Näfe, and F. Aldinger, J. Eur. Ceram. Soc. 19, 1801 (1999). http://dx.doi.org/10.1016/S0955-2219(99)00009-6 7. N. V. Skorodumova, A. K. Jonsson, M. Herranen, M. Strømme, G. A. Niklasson, B. Johansson, and S. I. Simak, Appl. Phys. Lett. 86, 241910 (2005). http://dx.doi.org/10.1063/1.1948516 8. H. T. Fan, X. M. Teng, S. S. Pan, C. Ye, G. H. Li, and L. D. Zhang, Appl. Phys. Lett. 87, 231916 (2005). http://dx.doi.org/10.1063/1.2136351 9. M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, Opt. Mater. 33, 480 (2011). http://dx.doi.org/10.1016/j.optmat.2010.10.028 10. H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, and G. H. Ma, Appl. Surf. Sci. 253, 7497 (2007). http://dx.doi.org/10.1016/j.apsusc.2007.03.047 11. P. F. Yan, K. Du, and M. L. Sui, Acta Mater. 58, 3867 (2010). http://dx.doi.org/10.1016/j.actamat.2010.03.045 12. J. Siegel, A. Schropp, J. Solís, C. N. Afonso, and M. Wuttig, Appl. Phys. Lett. 84, 2250 (2004). http://dx.doi.org/10.1063/1.1689756 13. A. J. Birnbaum, G. Satoh, and Y. L. Yao, J. Appl. Phys. 106, 043504 (2009). http://dx.doi.org/10.1063/1.3183950 14. M. Vila, C. Díaz-Guerra, and J. Piqueras, Mater. Chem. Phys. 133, 559 (2012). http://dx.doi.org/10.1016/j.matchemphys.2012.01.088 15. See supplementary material at http://dx.doi.org/10.1063/1.4747198 for XRD and HRTEM of the grown nanowires. [Supplementary Material] 16. R. J. Betsch and W. B. White, Spectrochim. Acta, Part A 34, 505 (1978). http://dx.doi.org/10.1016/0584-8539(78)80047-6 17. V. N. Denisov, A. N. Ivlev, A. S. Lipin, B. N. Mavrin, and V. G. Orlov, J. Phys. Condens. Matter 9, 4967 (1997). http://dx.doi.org/10.1088/0953-8984/9/23/020 18. H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, J. Phys. D: Appl. Phys. 39, 1939 (2006). http://dx.doi.org/10.1088/0022-3727/39/9/032 19. A. Rubbens, M. Drache, P. Roussel, and J. P. Wignacourt, Mater. Res. Bull. 42, 1683 (2007). http://dx.doi.org/10.1016/j.materresbull.2006.11.036 20. M. Yashima and D. Ishimura, Chem. Phys. Lett. 378, 395 (2003). http://dx.doi.org/10.1016/j.cplett.2003.07.014 21. C. E. Mohn, S. Stølen, S. T. Norberg, and S. Hull, Phys. Rev. B 80, 024205 (2009). http://dx.doi.org/10.1103/PhysRevB.80.024205 22. L. Shi, Q. Hao, C. Yu, N. Mingo, X. Kong, and Z. L. Wang, Appl. Phys. Lett. 84, 2638 (2004). http://dx.doi.org/10.1063/1.1697622 23. M. Avrami, J. Chem. Phys. 7, 1103 (1939); http://dx.doi.org/10.1063/1.1750380; M. Avrami, J. Chem. Phys. 8, 212 (1940); http://dx.doi.org/10.1063/1.1750631; M. Avrami, J. Chem. Phys. 9, 177 (1941). http://dx.doi.org/10.1063/1.1750872 24. G. Mannino, C. Spinella, R. Ruggeri, A. La Magna, G. Fisicaro, E. Fazio, F. Neri, and V. Privitera, Appl. Phys. Lett. 97, 022107 (2010). http://dx.doi.org/10.1063/1.3459959 25. S. Venkataraman, H. Hermann, C. Mickel, L. Schultz, D. J. Sordelet, and J. Eckert, Phys. Rev. B 75, 104206 (2007). http://dx.doi.org/10.1103/PhysRevB.75.104206 26. L. E. Depero and L. Sangaletti, J. Solid State Chem. 122, 439 (1996). http://dx.doi.org/10.1006/jssc.1996.0139 27. L. Kumari, J.-H. Lin, and Y.-R. Ma, Nanotechnology 18, 295605 (2007). http://dx.doi.org/10.1088/0957-4484/18/29/295605 28. V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, K. Polak, S. Zazubovich, and Y. Zorenko, J. Phys.: Condens. Matter 21, 415502 (2009). http://dx.doi.org/10.1088/0953-8984/21/41/415502 29. M. Gaft, R. Reisfeld, G. Panczer, G. Boulon, T. Saraidarov, and S. Erlish, Opt. Mater. 16, 279 (2001). http://dx.doi.org/10.1016/S0925-3467(00)00088-4 30. A. Matsumoto, Y. Koyama, and I. Tanaka, Phys. Rev. B 81, 094117 (2010). http://dx.doi.org/10.1103/PhysRevB.81.094117
dspace.entity.typePublication
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublicationb1b44979-3a0d-45d7-aa26-a64b0dbfee18
relation.isAuthorOfPublication.latestForDiscoveryb1b44979-3a0d-45d7-aa26-a64b0dbfee18

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ13libre.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format

Collections