Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A divide-link algorithm based on fuzzy similarity for clustering networks

dc.book.titleIntelligent Systems Design and Applications (ISDA), 2011 11th International Conference on
dc.contributor.authorGómez González, Daniel
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.authorYáñez Gestoso, Francisco Javier
dc.date.accessioned2023-06-20T05:46:30Z
dc.date.available2023-06-20T05:46:30Z
dc.date.issued2011
dc.description.abstractIn this paper we present an efficient hierarchical clustering algorithm for relational data, being those relations modeled by a graph. The hierarchical clustering approach proposed in this paper is based on divisive and link criteria, to break the graph and join the nodes at different stages. We then apply this approach to a community detection problems based on the well-known edge line betweenness measure as the divisive criterium and a fuzzy similarity relation as the link criterium. We present also some computational results in some well-known examples like the Karate Zachary club-network, the Dolphins network, Les Miserables network and the Authors centrality network, comparing these results to some standard methodologies for hierarchical clustering problem, both for binary and valued graphs.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28646
dc.identifier.doi10.1109/ISDA.2011.6121830
dc.identifier.isbn978-1-4577-1676-8
dc.identifier.officialurlhttps//doi.org/10.1109/ISDA.2011.6121830
dc.identifier.relatedurlhttp://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6121830&abstractAccess=no&userType=inst
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45540
dc.language.isoeng
dc.page.final1252
dc.page.initial1247
dc.page.total1402
dc.publisherIEEE
dc.relation.ispartofseriesIntelligent Systems Design and Applications (ISDA), 2011 11th International Conference on
dc.rights.accessRightsrestricted access
dc.subject.cdu519.8
dc.subject.keywordGraph Theory
dc.subject.keywordCommunity detection
dc.subject.keywordFuzzy Similarity
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleA divide-link algorithm based on fuzzy similarity for clustering networksen
dc.typebook part
dcterms.referencesJ. M. Anthonisse, The rush in a directed graph, Technical Report, Stichting Mathematisch Centrum, 2e Boerhaavestraat 49 Amsterdam, The Netherlands. (1971) R.K. Ahuja, T. L. Magnanti, and J. B. Orlin, 1993, Net- work Flows: Theory, Algorithms, and Applications (Prentice Hall, Englewood Cliks, USA). J. Duch and A. Arenas. Community identification using extremal optimization. Phys. Rev. E 72 027104 (2005) A. Arenas, A. Fernandez and S. Gomez, Analysis of the structure of complex networks at different resolution levels. New J. Phys. 10(5), 053039 (2008). E. Estrada, and N. Hatano, Phys. Rev. E 77(3), 036111 (2008). E. Estrada, and N. Hatano, 2009, Appl. Math. Comput. 214,500. F. Fouss, and J.-M. Renders, Random-walk computation of similarities between nodes of a graph, with application to collaborative recommendation. IEEE Trans. on Knowl. and Data Eng. 19(3), 355-369 (2007). S. Fortunato, Community detection in graphs. Physics Reports 486, 75-174 (2010). L. Freeman, Centrality in networks: I. conceptual clarification. Social Networks, 1, 215239 (1979) M. Girvan and M.E.J. Newman, Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the USA 99, 7821-7826 (2002). D. Gómez and J. Montero, Fuzzy sets in remote sensing classification. Soft Computing, 12, 243-249 (2008). D. Gómez, J. Montero and G. Biging, Improvements to remote sensing using fuzzy classification, graphs and accuracy statistics. Pure and Applied Geophysics, 165, 1555-1575 (2008). D. Gómez, J. Montero and G. Biging, Accuracy statistics for judging soft classification. International Journal of Remote Sensing, 29(3), 693-709 (2008). D. Gómez, J. Montero and J. Yánez, A coloring algorithm for image classification. Information Sciences, 176, 3645-3657 (2006). D. Gómez, J. Montero, J. Yáñez and C. Poidomani, A graph coloring algorithm approach for image segmentation. Omega 35, 173-183 (2007). S. Gregory. Fuzzy overlapping communities in networks. Journal of Statistical Mechanics: Theory and Experiment. DOI: 10.1088/1742-5468/2011/02/ P02017. (2011) J. Montero, D. Gómez and H. Bustince, On the relevance of some families of fuzzy sets. Fuzzy Sets and Systems, 158, 2429-2442 (2007). J. Montero, V. López and D. Gómez, The role of fuzziness in decision making. Studies in Fuzziness and Soft Computing, 215, 337-349 (2007). J. Montero and L. Martinez, Upgrading ideas about the concept of soft computing International Journal of Computational Intelligence Systems, 3, 144-147 (2010). M.E.J. Newman, Fast algórithm for detecting community structure in networks. Physical Review E, 69, 066133 (2004). M.E.J. Newman, Analysis of weighted networks. Physical Review E, 70, 056131 (2004). M.E.J. Newman and M. Girvan, Finding and evaluating community structure in networks. Physical Reviews, 69, 026113. M.E.J. Newman, A measure of betweenness centrality based on random walks. Social Networks, 27 (1), 3954. (2005). M. Saerens, F. Fouss, L. Yen, and P. Dupont, 2004, in Proc. Eur. Conf. on Machine Learning, URL citeseer.ist.psu. edu/saerens04principal.html. F. Tavares-Pereira, J.R. Figueira, V. Mousseau and B. Roy, Multiple criteria districting problems: The public transportation network pricing system of the Paris region. Annals of Operations Research, 154, 69-92 (2007). P.G. Sun, L. Gao, S. S. Han, Identification of overlapping and non-overlapping community structure by fuzzy clustering in complex networks. Information Sciences, 181, 10601071 (2011). F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, V. and D. Parisi, Defining and identifying communities in networks. Proceedings of the National Academy of Sciences of the United States of America 101, 26582663. (2004) S. Wasserman and K. Faust. Social Networks Analysis (Cambridge University Press, 1994). J. Yáñez, S. Muñoz and J. Montero, Graph coloring inconsistencies in image segmentation. Computer Engineering and Information Sciences, 1, 435-440 (2008). L. Yen, F. Fouss, C. Decaestecker, P. Francq, and M. Saerens, 2007, in PAKDD, pp. 1037-1045. T. Zhou, J. Liu, and B.Wang, Notes on the calculation of node betweenness. Chinese Physics Letters, 23, 2327-2329 (2006). S. Yue, J.S. Wang, T. Wu and H. Wang, A new separation measure for improving the effectiveness of validity indices. Information Sciences, 180(5), 748-764 (2010). N. Yuruk, M. Mete and T. Schweiger, A divisive hierarchical structural clustering algorithm for networks. Proceedings of the 7th IEEE International Conference on Data Mining Workshops, 441-448 (2007).
dspace.entity.typePublication
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication5ce22aab-a4c1-4dfe-b8f9-78e09cbd2878
relation.isAuthorOfPublication.latestForDiscovery4dcf8c54-8545-4232-8acf-c163330fd0fe

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero235.pdf
Size:
607.86 KB
Format:
Adobe Portable Document Format