Minimum divergence estimators based on grouped data
Loading...
Download
Full text at PDC
Publication date
2001
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citation
Abstract
The paper considers statistical models with real-valued observations i.i.d. by F(x, theta (0)) from a family of distribution functions (F(x, theta); theta is an element of Theta), Theta subset of R-s, s greater than or equal to 1. For random quantizations defined by sample quantiles (F-n(-1)(lambda (1)),..., F-n(-1)(lambda (m-1))) of arbitrary fixed orders 0 < <lambda>(1) < ... < lambda (m-1) < 1, there are studied estimators <theta>(phi ,n) of theta (0) which minimize phi -divergences of the theoretical and empirical probabilities. Under an appropriate regularity, all these estimators are shown to be as efficient (first order, in the sense of Rao) as the MLE in the model quantified nonrandomly by (F-1(lambda (1), theta (0)),..., F-1(lambda (m-1), theta (0))). Moreover, the Fisher information matrix I-m(theta (0), lambda) of the latter model with the equidistant orders lambda = (lambda (j) = j/m : 1 less than or equal to j less than or equal to m-1) arbitrarily closely approximates the Fisher information F(theta (0)) of the original model when m is appropriately large. Thus the random binning by a large number of quantiles of equidistant orders leads to appropriate estimates of the above considered type.