Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Laser thermal annealing effects on single crystal gallium phosphide

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorOlea Ariza, Javier
dc.date.accessioned2023-06-20T03:41:11Z
dc.date.available2023-06-20T03:41:11Z
dc.date.issued2009-09-01
dc.description© 2009 American Institute of Physics. The authors would like to acknowledge the CAI de Difracción de Rayos X and CAI de Microscopía of the Universidad Complutense de Madrid for GIXRD measurements and TEM measurements, respectively. This work was made possible because of the FPI program (Grant No. BES-2005-7063) and the Spanish Ministry of Education and Science under Contract No. MAT2007-63617. This work was partially supported by the Project NUMANCIA (Grant No. S-0505/ENE/000310) funded by the Comunidad de Madrid and by the Project GENESIS-FV (Grant No. CSD2006-00004) funded by the Spanish Consolider National Program.
dc.description.abstractWe have studied the laser thermal annealing (LTA) effects on single crystal GaP. The samples have been analyzed by means of Raman spectroscopy, glancing incidence x-ray diffraction (GIRXD), and transmission electron microscopy (TEM) measurements. After LTA process, the Raman spectra of samples annealed with the highest energy density show a forbidden TO vibrational mode of GaP. This result suggests the formation of crystalline domains with a different orientation in the annealed region regarding the GaP unannealed wafer. This behavior has been corroborated by GIXRD measurements. TEM images show that the LTA produces a defective layer with disoriented crystalline domains in the surface. The depth of this defective layer increases with the energy density of LTA. The lack of crystallinity after LTA processes could be related with the high bond energy value of GaP.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Education and Science - FPI program
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipSpanish Consolider National Program
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25889
dc.identifier.doi10.1063/1.3187902
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.3187902
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44245
dc.issue.number5
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDBES-2005-7063
dc.relation.projectIDMAT2007-63617
dc.relation.projectIDProject NUMANCIA-S-0505/ENE/000310
dc.relation.projectIDProject GENESIS-FV-CSD2006-00004
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordImplanted Gaas
dc.subject.keywordSolar-Cells
dc.subject.keywordSemiconductors
dc.subject.keywordEfficiency
dc.subject.keywordAlloys
dc.subject.keywordGap
dc.subject.keywordINP
dc.subject.keywordRecombination
dc.subject.keywordEnergy.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleLaser thermal annealing effects on single crystal gallium phosphide
dc.typejournal article
dc.volume.number106
dcterms.references1) A. Luque and A. Martí, Prog. Photovoltaics 9, 73 (2001). 2) A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997). 3) A. Luque, A. Marti, E. Antolín, and C. Tablero, Physica B 382, 320 (2006). 4) A. Martí, L. Cuadra, N. López, and A. Luque, Semiconductors 38, 946 (2004). 5) L. Cuadra, A. Martí, and A. Luque, IEEE Trans. Electron Devices 51, 1002 (2004). 6) A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, E. Cánovas, P. G. Linares, and A. Luque, Phys. Rev. Lett. 97, 247701 (2006). 7) A. Luque, A. Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, and L. J. Caballero, L. Cuadra, and J. L. Balenzategui, Appl. Phys. Lett. 87, 083505 (2005). 8) W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, B. J. Friedman, J. M. Olson, and S. R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999). 9) K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, Phys. Rev. Lett. 91, 246403 (2003). 10) K. M. Yu, W. Walukiewicz, J. W. Ager III, D. Bour, R. Farshchi, O. D. Doubon, S. X. Li, D. Sharp, and E. E. Haller, Appl. Phys. Lett. 88, 092110 (2006). 11) C. Tablero and P. Wahnón, Appl. Phys. Lett. 82, 151 (2003). 12) C. Tablero, Phys. Rev. B 72, 035213 (2005). 13) J. Olea, M. Toledano-Luque, D. Pastor, G. González-Díaz, and I. Mártil, J. Appl. Phys. 104, 016105 (2008). 14) K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and M. C. Ridgway, Appl. Phys. Lett. 83, 2844 (2003). 15) E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, Appl. Phys. Lett. 94, 042115 (2009). 16) J. Olea, G. González-Díaz, D. Pastor, and I. Mártil, J. Phys. D: Appl. Phys. 42, 085110 (2009). 17) K. M. Yu, Semicond. Sci. Technol. 17, 785 (2002). 18) D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication12efa09d-69f7-43d4-8a66-75d05b8fe161
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,19libre.pdf
Size:
617.58 KB
Format:
Adobe Portable Document Format

Collections