Laser thermal annealing effects on single crystal gallium phosphide
dc.contributor.author | Martil De La Plaza, Ignacio | |
dc.contributor.author | González Díaz, Germán | |
dc.contributor.author | Olea Ariza, Javier | |
dc.date.accessioned | 2023-06-20T03:41:11Z | |
dc.date.available | 2023-06-20T03:41:11Z | |
dc.date.issued | 2009-09-01 | |
dc.description | © 2009 American Institute of Physics. The authors would like to acknowledge the CAI de Difracción de Rayos X and CAI de Microscopía of the Universidad Complutense de Madrid for GIXRD measurements and TEM measurements, respectively. This work was made possible because of the FPI program (Grant No. BES-2005-7063) and the Spanish Ministry of Education and Science under Contract No. MAT2007-63617. This work was partially supported by the Project NUMANCIA (Grant No. S-0505/ENE/000310) funded by the Comunidad de Madrid and by the Project GENESIS-FV (Grant No. CSD2006-00004) funded by the Spanish Consolider National Program. | |
dc.description.abstract | We have studied the laser thermal annealing (LTA) effects on single crystal GaP. The samples have been analyzed by means of Raman spectroscopy, glancing incidence x-ray diffraction (GIRXD), and transmission electron microscopy (TEM) measurements. After LTA process, the Raman spectra of samples annealed with the highest energy density show a forbidden TO vibrational mode of GaP. This result suggests the formation of crystalline domains with a different orientation in the annealed region regarding the GaP unannealed wafer. This behavior has been corroborated by GIXRD measurements. TEM images show that the LTA produces a defective layer with disoriented crystalline domains in the surface. The depth of this defective layer increases with the energy density of LTA. The lack of crystallinity after LTA processes could be related with the high bond energy value of GaP. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish Ministry of Education and Science - FPI program | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | Spanish Consolider National Program | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/25889 | |
dc.identifier.doi | 10.1063/1.3187902 | |
dc.identifier.issn | 0021-8979 | |
dc.identifier.officialurl | http://dx.doi.org/10.1063/1.3187902 | |
dc.identifier.relatedurl | http://scitation.aip.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44245 | |
dc.issue.number | 5 | |
dc.journal.title | Journal of Applied Physics | |
dc.language.iso | eng | |
dc.publisher | American Institute of Physics | |
dc.relation.projectID | BES-2005-7063 | |
dc.relation.projectID | MAT2007-63617 | |
dc.relation.projectID | Project NUMANCIA-S-0505/ENE/000310 | |
dc.relation.projectID | Project GENESIS-FV-CSD2006-00004 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 537 | |
dc.subject.keyword | Implanted Gaas | |
dc.subject.keyword | Solar-Cells | |
dc.subject.keyword | Semiconductors | |
dc.subject.keyword | Efficiency | |
dc.subject.keyword | Alloys | |
dc.subject.keyword | Gap | |
dc.subject.keyword | INP | |
dc.subject.keyword | Recombination | |
dc.subject.keyword | Energy. | |
dc.subject.ucm | Electricidad | |
dc.subject.ucm | Electrónica (Física) | |
dc.subject.unesco | 2202.03 Electricidad | |
dc.title | Laser thermal annealing effects on single crystal gallium phosphide | |
dc.type | journal article | |
dc.volume.number | 106 | |
dcterms.references | 1) A. Luque and A. Martí, Prog. Photovoltaics 9, 73 (2001). 2) A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997). 3) A. Luque, A. Marti, E. Antolín, and C. Tablero, Physica B 382, 320 (2006). 4) A. Martí, L. Cuadra, N. López, and A. Luque, Semiconductors 38, 946 (2004). 5) L. Cuadra, A. Martí, and A. Luque, IEEE Trans. Electron Devices 51, 1002 (2004). 6) A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, E. Cánovas, P. G. Linares, and A. Luque, Phys. Rev. Lett. 97, 247701 (2006). 7) A. Luque, A. Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, and L. J. Caballero, L. Cuadra, and J. L. Balenzategui, Appl. Phys. Lett. 87, 083505 (2005). 8) W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, B. J. Friedman, J. M. Olson, and S. R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999). 9) K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, Phys. Rev. Lett. 91, 246403 (2003). 10) K. M. Yu, W. Walukiewicz, J. W. Ager III, D. Bour, R. Farshchi, O. D. Doubon, S. X. Li, D. Sharp, and E. E. Haller, Appl. Phys. Lett. 88, 092110 (2006). 11) C. Tablero and P. Wahnón, Appl. Phys. Lett. 82, 151 (2003). 12) C. Tablero, Phys. Rev. B 72, 035213 (2005). 13) J. Olea, M. Toledano-Luque, D. Pastor, G. González-Díaz, and I. Mártil, J. Appl. Phys. 104, 016105 (2008). 14) K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and M. C. Ridgway, Appl. Phys. Lett. 83, 2844 (2003). 15) E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, Appl. Phys. Lett. 94, 042115 (2009). 16) J. Olea, G. González-Díaz, D. Pastor, and I. Mártil, J. Phys. D: Appl. Phys. 42, 085110 (2009). 17) K. M. Yu, Semicond. Sci. Technol. 17, 785 (2002). 18) D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6db57595-2258-46f1-9cff-ed8287511c84 | |
relation.isAuthorOfPublication | a5ab602d-705f-4080-b4eb-53772168a203 | |
relation.isAuthorOfPublication | 12efa09d-69f7-43d4-8a66-75d05b8fe161 | |
relation.isAuthorOfPublication.latestForDiscovery | a5ab602d-705f-4080-b4eb-53772168a203 |
Download
Original bundle
1 - 1 of 1