Convergence to travelling waves for quasilinear Fisher–KPP type equations
Loading...
Download
Full text at PDC
Publication date
2012
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Abstract
We consider the Cauchy problem ut = ϕ(u)xx + ψ(u), (t, x) ∈ R+ × R, u(0, x) = u0(x), x ∈ R, when the increasing function ϕ satisfies that ϕ(0) = 0 and the equation may degenerate at u = 0 (in the case of ϕ� (0) = 0). We consider the case of u0 ∈ L∞(R), 0 u0(x) 1 a.e. x ∈ R and the special case of ψ(u) = u − ϕ(u). We prove that the solution approaches the travelling wave solution (with speed c = 1), spreading either to the right or to the left, or to the two travelling waves moving in opposite directions.













