Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Métodos de aprendizaje automático aplicados a la industria aseguradora

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2020

Defense date

06/2020

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

En este trabajo se propone la aplicación de una serie de modelos (análisis de la cesta de compra, análisis clúster, análisis de supervivencia, regresión de Cox, redes neuronales artificiales, árboles de decisión, máquinas de vectores soporte, regularizaciones Ridge, Lasso y Elasticnet, xGBoost tree y xGBoost linear) que se fundamentan en técnicas de aprendizaje automático y de minería de datos con el fin de tener un mejor entendimiento de los clientes, poder sacar un mejor provecho de su relación con la compañía e implementar técnicas modernas para abordar algunas cuestiones de interés dentro del sector asegurador. Dado lo anterior, los modelos propuestos pueden clasificarse en dos categorías: modelos de conocimiento del cliente y modelos actuariales de tarificación. El primer grupo de modelos tiene por objeto caracterizar los perfiles de los clientes, sus patrones de compra y descubrir el comportamiento de la cartera, características reflejadas en cuatro pilares que la compañía debe identificar y aprovechar para tener relaciones más rentables con los clientes: la identificación, la atracción, el desarrollo y la retención. El ciclo de vida de un cliente está enmarcado por la gestión de las relaciones con los clientes, donde las primeras fases consisten en conseguir clientes, posteriormente estas relaciones se establecen y se desarrollan a través de venta cruzada y ventas de mayor valor, y en las últimas fases del ciclo, se procura retenerlos. Por su parte, el segundo grupo de modelos tiene por objeto abordar de una forma diferente el problema de tarificación, a través de técnicas de reciente publicación que pueden mejorar la eficiencia y la calidad de los resultados en comparación con las técnicas tradicionales de GLM, las cuales, a través de los años y la investigación de diferentes autores, se revela que tienen aspectos que pueden mejorar. El objetivo principal de este trabajo consiste en mostrar cómo las técnicas de aprendizaje automático pueden aplicarse en el sector asegurador, usarse en la predicción del comportamiento de los clientes, en la eficiencia del cálculo de primas y traer consigo ventajas para la compañía en términos de estrategia y rentabilidad.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Keywords