Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Hardware design of LIF with Latency neuron model with memristive STDP synapses

dc.contributor.authorAcciarito, Simone
dc.contributor.authorCardarilli, Gian Carlo
dc.contributor.authorCristini, Alessandro
dc.contributor.authorDi Nunzio, Luca
dc.contributor.authorFazzolari, Rocco
dc.contributor.authorKhanal, Gaurav Mani
dc.contributor.authorRe, Marco
dc.contributor.authorSusi, Gianluca
dc.date.accessioned2025-01-29T11:33:36Z
dc.date.available2025-01-29T11:33:36Z
dc.date.issued2017-09
dc.descriptionSe deposita la versión aceptada (postprint) del artículo
dc.description.abstractIn this paper, the hardware implementation of a neuromorphic system is presented. This system is composed of a Leaky Integrate-and-Fire with Latency (LIFL) neuron and a Spike-Timing Dependent Plasticity (STDP) synapse. LIFL neuron model allows to encode more information than the common Integrate-and-Fire models, typically considered for neuromorphic implementations. In our system LIFL neuron is implemented using CMOS circuits while memristor is used for the implementation of the STDP synapse. A description of the entire circuit is provided. Finally, the capabilities of the proposed architecture have been evaluated by simulating a motif composed of three neurons and two synapses. The simulation results confirm the validity of the proposed system and its suitability for the design of more complex spiking neural networks.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationAcciarito, S., Cardarilli, G.C., Cristini, A., Nunzio, L.D., Fazzolari, R., Khanal, G.M., Re, M., Susi, G., 2017. Hardware design of LIF with Latency neuron model with memristive STDP synapses. Integration 59, 81–89. https://doi.org/10.1016/j.vlsi.2017.05.006
dc.identifier.doi10.1016/j.vlsi.2017.05.006
dc.identifier.essn2941-8895
dc.identifier.issn0720-5120
dc.identifier.officialurlhttps://doi.org/10.1016/j.vlsi.2017.05.006
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0167926017303206
dc.identifier.urihttps://hdl.handle.net/20.500.14352/116839
dc.journal.titleIntegration
dc.language.isoeng
dc.page.final89
dc.page.initial81
dc.publisherElsevier
dc.rights.accessRightsopen access
dc.subject.cdu004.048
dc.subject.cdu602
dc.subject.cdu53
dc.subject.keywordLeaky Integrate-and-Fire with Latency (LIFL)
dc.subject.keywordNeuron
dc.subject.keywordSynapse
dc.subject.keywordSTDP
dc.subject.keywordMemristor
dc.subject.keywordNeuromorphic system
dc.subject.keywordAnalog VLSI
dc.subject.ucmBioinformática
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmInformática médica y telemedicina
dc.subject.unesco3314 Tecnología Médica
dc.subject.unesco2404 Biomatemáticas
dc.subject.unesco3304.06 Arquitectura de Ordenadores
dc.titleHardware design of LIF with Latency neuron model with memristive STDP synapses
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number59
dspace.entity.typePublication
relation.isAuthorOfPublication20ae4bbe-1ac0-42b8-98b1-3e3080aeeba7
relation.isAuthorOfPublication.latestForDiscovery20ae4bbe-1ac0-42b8-98b1-3e3080aeeba7

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NEW_Hardware_Ver_Aceptada.pdf
Size:
2.94 MB
Format:
Adobe Portable Document Format

Collections