Reissner-Nordstrom black holes in the inverse electrodynamics model

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Iop Publishing
Google Scholar
Research Projects
Organizational Units
Journal Issue
We study electric and magnetic monopoles in static, spherically symmetric and constant curvature geometries in the context of the inverse electrodynamics model. We prove that this U(1) invariant Lagrangian density is able to support the standard metric of a Reissner-Nordstrom Black Hole, but with more complex thermodynamical properties than in the standard case. By employing the Euclidean Action approach we perform a complete analysis of its phase space depending on the sign and singularities of the heat capacity and the Helmholtz free energy.
© 2015 IOP Publishing. We would like to thank Pablo Jimeno Romero for his useful advice, and to Luis J. Garay and José Beltrán Jiménez for helpful discussions. J.A.R.C. and A.d.l.C.D. acknowledge financial support from MINECO (Spain) projects FPA2011-27853-C02-01, FIS2011-23000 and Consolider-Ingenio MULTIDARK CSD2009-00064. J.J. acknowledges financial support the Spanish Ministerio de Educación, Cultura y Deporte for support through grant FPU-13/02934. J.A.R.C. thanks the support of the Becas Complutense del Amo program. A.d.l.C.D. thanks Kavli Institute for Theoretical Physics China (KITPC) for their hospitality and the ACGC University of Cape Town, for support during the early stages of preparation of this manuscript. A.d.l.C.D. is also indebted to the Centre de Cosmologie Physique des Particules et Phénoménologie CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium for its assistance with the final steps prior to the release of this manuscript. J.J. is grateful to the Theoretical Physics and the Atomic, Molecular and Nuclear Physics Departments, Complutense University of Madrid for technical facilities.
Unesco subjects
[1] H. Reissner, Ann. Phys. (Leipz.) 50 (1916) 106 [2] G. Nordstrüm, Proc. K. Ned. Akad.Wet. 20 (1918), 1238 [3] C. S. Peca and J. Lemos, P.S., Phys. Rev. D 59 (1999) 124007 [gr-qc/9805004]. [4] G. Barnich and A. Gomberoff, Phys. Rev. D 78 (2008) 025025 [arXiv:0705.0632 [hep-th]]. [5] D. F. Jardim, M. E. Rodrigues and M. J. S. Houndjo, Eur. Phys. J. Plus 127 (2012) 123 [arXiv:1202.2830 [grqc]]. [6] A. Dobado, A. Gómez-Nicola, A. L. Maroto, and J. R. Peláez, Effective Lagrangians for the Standard Model, Eds. Springer-Verlag (1997). [7] M. Born and L. Infeld, Proc. Roy. Soc. Lond. A 144 (1934) 425. [8] D. -C. Zou, S. -J. Zhang and B. Wang, Phys. Rev. D 89, 044002 (2014) [arXiv:1311.7299 [hep-th]]; M. Allahverdizadeh, J. P. S. Lemos and A. Sheykhi, Phys. Rev. D 87, 084002 (2013) [arXiv:1302.5079 [gr-qc]]; S. Gunasekaran, R. B. Mann and D. Kubiznak, JHEP 1211, 110 (2012) [arXiv:1208.6251 [hep-th]]; R. Banerjee and D. Roychowdhury, Phys. Rev. D 85, 104043 (2012) [arXiv:1203.0118 [gr-qc]]; R. Banerjee and D. Roychowdhury, Phys. Rev. D 85, 044040 (2012) [arXiv:1111.0147 [gr-qc]]; S. Fernando and D. Krug, Gen. Rel. Grav. 35, 129 (2003) [hep-th/0306120]. [9] W. Heisenberg and H. Euler, Z. Phys. 98 (1936) 714 [physics/0605038]. [10] G. V. Dunne, Int. J. Mod. Phys. A 27 (2012) 1260004 [Int. J. Mod. Phys. Conf. Ser. 14 (2012) 42] [arXiv:1202.1557 [hep-th]]. [11] E. S. Fradkin and A. A. Tseytlin, Phys. Lett. B 163 (1985) 123. [12] A. A. Tseytlin, Nucl. Phys. B 501 (1997) 41 [hepth/9701125]. [13] D. Brecher, Phys. Lett. B 442 (1998) 117 [hepth/9804180]. [14] R. Ruffini, Y. -B. Wu and S. -S. Xue, Phys. Rev. D 88, 085004 (2013) [arXiv:1307.4951 [hep-th]]. [15] G. W. Gibbons and K. Hashimoto, JHEP 0009, 013 (2000) [hep-th/0007019]; M. Hassaine and C. Martínez, Phys. Rev. D 75, 027502 (2007) [hep-th/0701058]; M. Hassaine and C. Martínez, Class. Quant. Grav. 25, 195023 (2008) [arXiv:0803.2946 [hep-th]]; K. A. Bronnikov, Phys. Rev. D 63, 044005 (2001) [gr-qc/0006014]; J. Beltran Jimenez, R. Durrer, L. Heisenberg and M. Thorsrud, JCAP 1310 (2013) 064 [arXiv:1308.1867 [hep-th]]; J. Beltran Jiménez, E. Dio and R. Durrer, JHEP 1304 (2013) 030 [arXiv:1211.0441 [hep-th]]; A. Burinskii and S. R. Hildebrandt, Phys. Rev. D 65, 104017 (2002) [hep-th/0202066]; I. Dymnikova, Class. Quant. Grav. 21, 4417 (2004) [gr-qc/0407072]; M. Novello, S. E. Perez Bergliaffa and J. M. Salim, Class. Quant. Grav. 17, 3821 (2000) [gr-qc/0003052]; M. Novello, V. A. De Lorenci, J. M. Salim and R. Klippert, Phys. Rev. D 61, 045001 (2000) [gr-qc/9911085]; G. J. Olmo and D. Rubiera-Garcia, Phys. Rev. D 84, 124059 (2011) [arXiv:1110.0850 [gr-qc]]; J. Beltran Jimenez and A. L. Maroto, JCAP 1012 (2010) 025 [arXiv:1010.4513 [astro-ph.CO]]; Phys. Rev. D 83 (2011) 023514 [arXiv:1010.3960 [astro-ph.CO]]. [16] J. Díaz-Alonso and D. Rubiera-García, Phys. Rev. D 81 (2010) 064021 [arXiv:0908.3303 [hep-th]]; Phys. Rev. D 82 (2010) 085024 [arXiv:1008.2710 [hep-th]]. [17] J. M. Bardeen, B. Carter and S. W. Hawking, Commun. Math. Phys. 31 (1973) 161. [18] G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15 (1977) 2752. [19] S. W. Hawking, Phys. Rev. D 18 (1978) 1747. [20] R. M. Wald, General Relativity, (University of Chicago Press, Chicago, U.S.A., 1984). [21] S. W. Hawking, Nature 248 (1974) 30. [22] J.D. Jackson, Classical Electrodynamics Ed: John Wiley & Sons-3rd ed. (1998). [23] G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15 (1977) 2738. [24] A. Sahay, T. Sarkar and G. Sengupta, JHEP 1007 (2010) 082 [arXiv:1004.1625 [hep-th]]. [25] S. W. Hawking, Commun. Math. Phys. 43 (1975) 199 [Erratum-ibid. 46 (1976) 206]. [26] [ J.B. Hartle and S.W. Hawking, Phys. Rev. D 13, 2188 (1976); G.W. Gibbons and M.J. Perry, Proc. R. Soc. London A 358, 467 (1978); G.W. Gibbons and S.W. Hawking, Euclidean Quantum Gravity, World Scientific, (1993). [27] M. M. Caldarelli, G. Cognola and D. Klemm, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022]. [28] E. Witten, Adv. Theor. Math. Phys. 2 (1998) 505 [hepth/9803131]. [29] R. M. Wald, Phys. Rev. D 48 (1993) 3427 [grqc/9307038]. [30] S. W. Hawking and D. N. Page, Commun. Math. Phys. 87 (1983) 577. [31] J. A. R. Cembranos, A. de la Cruz-Dombriz and P. J. Romero, Int. J. Geom. Meth. Mod. Phys. 11, 1450001 (2014) [arXiv:1109.4519 [gr-qc]]; AIP Conf. Proc. 1458, 439 (2011) [arXiv:1202.0853 [gr-qc]].