Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Cartan subgroups and regular points of o‐minimal groups

dc.contributor.authorBaro González, Elías
dc.contributor.authorBerarducci, Alessandro
dc.contributor.authorOtero, Margarita
dc.date.accessioned2023-06-17T13:34:19Z
dc.date.available2023-06-17T13:34:19Z
dc.date.issued2019-10-01
dc.description.abstractLet G be a group definable in an o-minimal structure M. We prove that the union of the Cartan subgroups of G is a dense subset of G. When M is an expansion of a real closed field we give a characterization of Cartan subgroups of G via their Lie algebras which allow us to prove firstly, that every Cartan subalgebra of the Lie algebra of G is the Lie algebra of a definable subgroup – a Cartan subgroup of G –, and secondly, that the set of regular points of G – a dense subset of G – is formed by points which belong to a unique Cartan subgroup of G.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipMIUR
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/57844
dc.identifier.doi10.1112/jlms.12216
dc.identifier.issn1469-7750
dc.identifier.officialurlhttps://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/jlms.12216
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13777
dc.journal.titleJournal of the London Mathematical Society
dc.language.isoeng
dc.publisherLondon Mathematical Society
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-55565-P
dc.relation.projectID FECYT -- ESTRUCTURAS ALGEBRAICAS, ANALITICAS Y O-MINIMALES
dc.relation.projectIDUCM (910444)
dc.relation.projectIDPRIN 2012 ‘Logica, Modelli e Insiemi’
dc.relation.projectIDProgetto di Ricerca d'Ateneo 2015 ‘Connessioni fra dinamica olomorfa, teoria ergodica e logica matematica nei sistemi dinamici’.
dc.relation.projectIDUniversità di Pisa. Grant Number: PRA 2015 Connessioni fra dinamica olomorfa, teoria ergodica e logica matematica nei sistemi dinamici
dc.rights.accessRightsopen access
dc.subject.cdu510.6
dc.subject.cdu164
dc.subject.keywordLógica simbólica y matemática
dc.subject.keywordTeoría de grupos
dc.subject.keywordMathematical logic and foundations
dc.subject.keywordGroup theory
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmGrupos (Matemáticas)
dc.subject.ucmLógica simbólica y matemática (Matemáticas)
dc.subject.unesco12 Matemáticas
dc.subject.unesco1102.14 Lógica Simbólica
dc.titleCartan subgroups and regular points of o‐minimal groups
dc.typejournal article
dcterms.references1. E. Baro, E. Jaligot and M. Otero, ‘ Commutators in groups definable in o‐minimal structures’, Proc. Amer. Math. Soc. 140 (2012) 3629– 3643. 2. E. Baro, E. Jaligot and M. Otero, ‘ Cartan subgroups of groups definable in o‐minimal structures’, J. Inst. Math. Jussieu 13 (2014) 849– 893. 3. A. Berarducci, M. Otero, Y. Peterzil and A. Pillay, ‘ A descending chain condition for groups definable in o‐minimal structures’, Ann. Pure Appl. Logic 134 (2005) 303– 313. 4. A. Borel, Linear algebraic groups, Graduate Texts in Mathematics 126 ( Springer, New York, 1991). 5. N. Bourbaki, Lie groups and Lie algebras, Chapters 7–9 ( Springer, Berlin, 2005). (Translated from the 1975 and 1982 French originals by Andrew Pressley.) 6. C. Chevalley, Théorie des groupes de Lie. Tome III. Théorèmes généraux sur les algèbres de Lie, Actualités Scientifiques et Industrielles 1226 ( Hermann & Cie, Paris, 1955). 7. A. Conversano, ‘ Maximal compact subgroups in the o‐minimal setting’, J. Math. Log. 13 (2013) 1350004. 8. M. J. Edmundo, ‘ Solvable groups definable in o‐minimal structures’, J. Pure Appl. Algebra 185 (2003) 103– 145. 9. M. J. Edmundo and M. Otero, ‘ Definably compact abelian groups’, J. Math. Log. 4 (2004) 163– 180. 10. O. Frécon, ‘ Linearity of groups definable in o‐minimal structures’, Selecta Math. (N.S.) 23 (2017) 1563– 1598. 11. G. P. Hochschild, Basic theory of algebraic groups and Lie algebras, Graduate Texts in Mathematics 75 ( Springer, New York, 1981). 12. K. H. Hofmann, ‘ Near‐Cartan algebras and groups’, Sem. Sophus Lie 2 (1992) 135– 151. 13. E. Hrushovski, Y. Peterzil and A. Pillay, ‘ Groups, measures, and the NIP’, J. Amer. Math. Soc. 21 (2008) 563– 596. 14. A. W. Knapp, Lie groups beyond an introduction, 2nd edn, Progress in Mathematics 140 ( Birkhäuser Boston, Boston, MA, 2002). 15. K.‐H. Neeb, ‘ On closedness and simple connectedness of adjoint and coadjoint orbits’, Manuscripta Math. 82 (1994) 51– 65. 16. K.‐H. Neeb, ‘ Weakly exponential Lie groups’, J. Algebra 179 (1996) 331– 361. 17. M. Otero, ‘ A survey on groups definable in o‐minimal structures’. Model theory with applications to algebra and analysis, vol. 2, London Mathematical Society Lecture Note Series 350 (eds Z. Chatzidakis, D. Macpherson, A. Pillay and A. Wilkie; Cambridge University Press, Cambridge, 2008) 177– 206. 18. Y. Peterzil, A. Pillay and S. Starchenko, ‘ Definably simple groups in o‐minimal structures’, Trans. Amer. Math. Soc. 352 (2000) 4397– 4419. 19. Y. Peterzil, A. Pillay and S. Starchenko, ‘ Linear groups definable in o‐minimal structures’, J. Algebra 247 (2002) 1– 23. 20. A. Pillay, ‘ On groups and fields definable in
dspace.entity.typePublication
relation.isAuthorOfPublication8695b08a-762f-4ef9-ad24-b6fe687ab7cd
relation.isAuthorOfPublication.latestForDiscovery8695b08a-762f-4ef9-ad24-b6fe687ab7cd

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baro10.pdf
Size:
342 KB
Format:
Adobe Portable Document Format

Collections