Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Phase separation enhanced magneto-electric coupling in La_(0.7)Ca_(0.3)MnO_(3)/BaTiO_(3) ultra-thin films

dc.contributor.authorAlberca, A.
dc.contributor.authorMunuera, C.
dc.contributor.authorAzpeitia, J.
dc.contributor.authorKirby, B.
dc.contributor.authorNemes, Norbert Marcel
dc.contributor.authorPérez Muñoz, Ana Mª
dc.contributor.authorTornos, J.
dc.contributor.authorMompean, F. J.
dc.contributor.authorLeón Yebra, Carlos
dc.contributor.authorSantamaría Sánchez-Barriga, Jacobo
dc.contributor.authorGarcía Hernández, M.
dc.date.accessioned2023-06-18T06:49:31Z
dc.date.available2023-06-18T06:49:31Z
dc.date.issued2015-12-09
dc.descriptionThe authors are grateful to Julie Borchers and Chuck Majkrzak for stimulating discussions. The authors acknowledge financial support from the Spanish MICINN and MINECO through grants MAT2011-27470-C02-01, MAT2011-27470 C02-02, MAT2014-52405-C2-2-R, MAT2014-52405-C2-1R and CSD 2009-00013.
dc.description.abstractWe study the origin ofthe magnetoelectric coupling in manganite films on ferroelectric substrates. We find large magnetoelectric coupling in La_(0.7)Ca_(0.3)MnO_(3)/BaTiO_(3) ultra thin films in experiments based on the converse magnetoelectric effect.The magnetization changes by around 30–40% upon applying electric fields on the order of 1kV/cm to the BaTiO_(3) substrate, corresponding to magnetoelectric coupling constants on the order of α=(2–5)·10−7 s/m. Magnetic anisotropy is also affected by the electric field induced strain, resulting in a considerable reduction of coercive fields.We compare the magnetoelectric effectin pre-poled and unpoled BaTiO_(3) substrates. Polarized neutron reflectometry reveals a two-layer behavior with a depressed magnetic layer of around 30Å atthe interface. Magnetic force microscopy (MFM) shows a granular magnetic structure of the La0.7Ca0.3MnO3.The magnetic granularity of the La_(0.7)Ca_(0.3)MnO_(3) film and the robust magnetoelastic coupling at the La_(0.7)Ca_(0.3)MnO_(3)/BaTiO_(3) interface are at the origin of the large magnetoelectric coupling, which is enhanced by phase separation in the manganite.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35323
dc.identifier.doi10.1038/srep17926
dc.identifier.issn2045-2322
dc.identifier.officialurlhttp://dx.doi.org/10.1038/srep17926
dc.identifier.relatedurlhttp://www.nature.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24317
dc.journal.titleScientific reports
dc.language.isoeng
dc.publisherNature publishing group
dc.relation.projectIDMAT2011-27470-C02-01
dc.relation.projectIDMAT2011- 27470-C02-02
dc.relation.projectIDMAT2014-52405-C2-2-R
dc.relation.projectIDMAT2014-52405-C2-1R
dc.relation.projectIDCSD-2009-00013
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu537
dc.subject.keywordStrain
dc.subject.keywordHeterostructures
dc.subject.keywordManganites
dc.subject.keywordBehavior.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titlePhase separation enhanced magneto-electric coupling in La_(0.7)Ca_(0.3)MnO_(3)/BaTiO_(3) ultra-thin films
dc.typejournal article
dc.volume.number5
dcterms.references1) Bibes, M., Barthélémy, A., “Oxide Spintronics”, IEEE Transactions on Electron Devices, 54, 1003 (2007). 2) Bibes, M., Villegas, Javier E., Barthélémy, A., “Ultrathin oxide films and interfaces for electronics and spintronics”, Advances in Physics, 60, 1 (2011). 3) Fiebig, M., “Revival of the magnetoelectric effect”, J. Phys. D: Appl. Phys., 38, R123 (2005). 4) Ramesh, R., Spaldin, Nicola A., “Multiferroics: progress and prospects in thin films ” ,Nat. Mater., 6, 21 (2007). 5) Gajek, M., et al., “Tunnel junctions with multiferroic barriers”, Nat. Mater., 6, 296 (2007). 6) Hill Nicola, A., “Why Are There so Few Magnetic Ferroelectrics?” J. Phys. Chem. B., 104, 6694 (2000). 7) Eerenstein, W., Mathur, N. D., Scott, J. F., “Multiferroic and magnetoelectric materials”, Nature, 442, 759 (2006). 8) Velev, J. P., Jaswal, S. S., Tsymbal, E. Y., “Multi-ferroic and magnetoelectric materials and interfaces”, Philos. Trans. A: Math. Phys. Eng. Sci., 369, 3069 (2011). 9) Vaz, C. A. F., “Electric field control of magnetism in multiferroic heterostructures”, J. Phys.: Condens. Matter., 24, 333201 (2012). 10) Vaz, C. A. F., Staub, U., “Artificial multiferroic heterostructures” J. Mater. Chem. C., 1, 6731 (2013). 11) Eerenstein, W., Wiora, M., Prieto, J. L., Scott, J. F., Mathur, N. D., “Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures”, Nat. Mater., 6, 348 (2007). 12) Valencia, S., et al., “ Interface-induced room-temperature multiferroicity in BaTiO3”, Nat. Mater. ,10, 753–758 (2011). 13) Li, Z., Wang, Y., Lin, Y., Nan, C., “Evidence for stress-mediated magnetoelectric coupling in multiferroic bilayer films from magneticfield-dependent Raman scattering”, Phys. Rev. B., 79, 180406 (2009). 14) Stamopoulos, D., Zeibekis, M., Zhang, S. J., “Modulation of the properties of thin ferromagnetic films with an externally applied electric field in ferromagnetic/piezoelectric/ferromagnetic hybrids”, J. Appl. Phys., 114, 134309 (2013). 15) Singamaneni, S. R., Fan, W., Prater, J. T., Narayan, J., “Magnetic properties of BaTiO3/La0.7Sr0.3MnO3 thin films integrated on Si(100)”, J. Appl. Phys., 116, 224104 (2014). 16) Buzzi, M., et al., “Single Domain Spin Manipulation by Electric Fields in Strain Coupled Artificial Multiferroic Nanostructures”, Phys. Rev. Lett., 111, 027204 (2013). 17) Algueró, M., et al., “Thin Film Multiferroic Nanocomposites by Ion Implantation”, ACS Appl. Mater. Inter., 6(3), 1909–1915 (2014). 18) Heidler, J., et al., “Manipulating magnetism in La0.7Sr0.3MnO3 via piezostrain”, Phys. Rev. B., 91, 024406 (2015). 19) Jain, P., et al., “Synthetic magnetoelectric coupling in a nanocomposite multiferroic”, Sci. Rep., 5, 9089 (2015) doi: 10.1038/srep09089. 20) Zhou, Z., et al., “Interfacial charge-mediated non volatile magnetoelectric coupling in Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 multiferroic heterostructures”, Sci. Rep., 5, 7740 (2014), doi: 10.1038/srep07740. 21) Song, G., Zhang, W., “First-principles study on the phase diagram and multiferroic properties of (SrCoO3)1/(SrTiO3)1 superlattices”, Sci. Rep., 4, 4564 (2014), doi: 10.1038/srep04564. 22) Thiele, C., Dörr, K., Bilani, O., Rödel, J., Schultz, L., “Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN−PT(001) (A=Sr,Ca)”, Phys. Rev. B., 75, 054408 (2007). 23) Moya, X., et al., “Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain”, Nat. Mater., 12, 52 (2013). 24) Burton, J. D., Tsymbal, E. Y., “Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface”, Phys. Rev. B., 80, 174406 (2009). 25) Dong, S., Zhang, X., Yu, R., Liu, J. -M., Dagotto, E., “Microscopic model for the ferroelectric field effect in oxide heterostructures”, Phys. Rev. B., 84, 155117 (2011). 26) Chen, H., Sohrab, I-B, “Ferroelectric control of magnetization in La1−xSrxMnO3 manganites: A first-principles study”, Phys. Rev. B., 86, 024433 (2012). 27) Béa, H., Gajek, M., Bibes, M., Barthélémy, A., “Spintronics with multiferroics”, J. Phys: Cond. Mat., 20, 434221 (2008). 28) Ordoñez, J. E., Gómez, M. E., Lopera, W., Prieto, P., “Ferroelectric/Ferromagnetic Bilayers Based on Oxide Materials by Pulsed-Laser Deposition”, IEEE Transactions on Magnetics., 49, 8 (2013). 29) Geprägs, S., Mannix, D., Opel, M., Goennenwein, S. T. B., Gross, R., “Converse magnetoelectric effects in Fe3O4/BaTiO3 multiferroic hybrids”, Phys. Rev. B., 88, 054412 (2013). 30) Molegraaf, H. J. A., et al., “Magnetoelectric Effects in Complex Oxides with Competing Ground States”, Adv. Mat., 21, 3470 (2009). 31) Vaz, C. A. F., Hoffman, J., Ahn Charles, H., Ramesh, R., “Magnetoelectric Coupling Effects in Multiferroic Complex Oxide Composite Structures”, Adv. Mat., 22, 2900 (2010). 32) Dagotto, E., “Nanoscale Phase Separation and Colossal Magnetoresistance”, Springer Series in Solid-State Sciences., Vol. 136 (2003). 33) Jona, F., Shirane, G., “Ferroelectric Crystals”, New York: Dover Publications (1993). 34) Kwei, G. H., Lawson, A. C., Billinge, S. J. L., Cheong, S. W., “Structures of the ferroelectric phases of barium titanate”, J. Phys. Chem. A., 97, 2368 (1993). 35) Fu, H., Cohen, R. E., “ Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics”, Nature, 403, 281 (2000). 36) Eliseev, E. A., et al., “Structural phase transitions and electronic phenomena at 180-degree domain walls in rhombohedral BaTiO3”, Phys. Rev. B, 87, 054111 (2013). 37) Alberca, A., et al., “Exotic magnetic anisotropy map in epitaxial La0.7Ca0.3MnO3 films on BaTiO3”, Phys. Rev. B, 84, 134402 (2011). 38) Alberca, A., et al., “Ferroelectric substrate effects on the magnetism, magnetotransport, and electroresistance of La0.7Ca0.3MnO3 thin films on BaTiO3”, Phys. Rev. B, 86, 144416 (2012). 39) Alberca, A., et al., “Magnetoelastic coupling in La0.7Ca0.3MnO3/BaTiO3 ultrathin films”, Phys. Rev. B, 88, 134410 (2013). 40) Colino, J. M., Andrés, A. de, “Huge magnetoresistance in ultrathin La0.7Ca0.3MnO3 films: The role of superparamagnetic clusters and domain walls”, Appl. Phys. Lett., 87, 142509 (2005). 41) He, C., et al., “Interfacial Ferromagnetism and Exchange Bias in CaRuO3/CaMnO3 Superlattices”, Phys. Rev. Lett., 109, 197202 (2012). 42) Moon, E. J., et al., “Effect of Interfacial Octahedral Behavior in Ultrathin Manganite Films”, Nano Lett., 14(5), 2509–2514 (2014). 43) Majkrzak, C. F., “Polarized neutron reflectometry”, Physica B, 173, 75–88 (1991). 44) Majkrzak, C. F., et al., “Determination of the effective transverse coherence of the neutron wave packet as employed in reflectivity investigations of condensed-matter structures. I. Measurements”, Phys. Rev. A, 89, 033851 (2014). 45) Motin Seikh, Md, Narayana, C., Sudheendra, L., Sood, A. K., Rao, C. N. R., “A Brillouin scattering study of La0.77Ca0.23MnO3 across the metal–insulator transition”, J. Phys.: Condens. Mat., 16, 4381 (2004). 46) O’Donnell, J., Rzchowski, M. S., Eckstein, J. N., Bozovic, I., “Magnetoelastic coupling and magnetic anisotropy in La0.67Ca0.33MnO3 films”, Appl. Phys. Lett., 72, 1775 (1998). 47) Biswas, A., et al., “Two-phase behavior in strained thin films of hole-doped manganites”, Phys. Rev. B, 61, 9665 (2000). 48) Biswas, A., et al., “Strain-driven charge-ordered state in La0.67Ca0.33MnO3”, Phys. Rev. B, 63, 184424 (2001). 49) Fitzgerald, E. A., Samavedam, S. B., Xie, Y. H., Giovane, L. M., “ Influence of strain on semiconductor thin film epitaxy”, J. Vac. Sci. Technol. A, 15, 1048 (1997). 50) Jiang, H., Singh, J., “Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study”, Phys. Rev. B, 56, 4696 (1997). 51) Ahn, K. H., Lookman, T., Bishop, A. R., “Strain-induced metal–insulator phase coexistence in perovskite manganites”, Nature 428, 401 (2004). 52) Majkrzak, C. F., O’Donovan, K. V., Berk, N. F., “Neutron Scattering From Magnetic Materials”, Elsevier Science, New York (2005).
dspace.entity.typePublication
relation.isAuthorOfPublication697f3953-540b-435a-afc9-ec307315d667
relation.isAuthorOfPublication213f0e33-39f1-4f27-a134-440d5d16a07c
relation.isAuthorOfPublication75fafcfc-6c46-44ea-b87a-52152436d1f7
relation.isAuthorOfPublication.latestForDiscovery697f3953-540b-435a-afc9-ec307315d667

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SantamaríaJ 02 libre + CC.pdf
Size:
1.41 MB
Format:
Adobe Portable Document Format

Collections