Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Tau-function formalism for supersymmetric KP hierarchies

dc.contributor.authorMartínez Alonso, Luis
dc.contributor.authorMedina Reus, Elena
dc.date.accessioned2023-06-20T20:12:22Z
dc.date.available2023-06-20T20:12:22Z
dc.date.issued1995-09
dc.description©1995 American Institute of Physics. The authors would like to thank Professor A. Ibort for many helpful conversations. The financial support of the CICYT is also acknowledged.
dc.description.abstractWe consider the Manin-Radul and Jacobian supersymmetric KP hierarchies from the point of view of the tau-function formalism. Solutions of their associated systems of Sato equations are characterized in terms of correlation functions of supersymmetric vertex operators of superghost type. The expression of the wave functions of these hierarchies in terms of tau-functions is obtained and the corresponding bilinear identities are established. Explicit methods for generating soliton and rational solutions are given.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34489
dc.identifier.doi10.1063/1.530927
dc.identifier.issn0022-2488
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.530927
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59831
dc.issue.number9
dc.journal.titleJournal of mathematical physics
dc.language.isoeng
dc.page.final4913
dc.page.initial4898
dc.publisherAmerican Institute of Physics
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordSuper-virasoro constraints
dc.subject.keywordEquations
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleTau-function formalism for supersymmetric KP hierarchies
dc.typejournal article
dc.volume.number36
dcterms.references1. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equations,” in Nonlinear Integrable Sysrems-Chsical and Quantum Theory, edited by M. Jimbo and T. Miwa (World Scientific, Singapore, 1983). 2. M. R. Douglas, Phys. Lett. B 238, 176 (1990). 3. R. Dijkgraff, H. Verlinde, and E. Verlinde, Nucl. Phys. B 348, 435 (1991). 4. Yu I. Manin and A. 0. Radul, Commun. Math. Phys. 98, 65 (1985). 5. M. Mulase, J. Diff. Geom. 34, 651 (1991). 6. J. M. Rabin, Commun. Math. Phys. 137, 533 (1991). 7. L. Alvarez-Gaume, H. Itoyama, J. L. Mties, and A. Zadra, Int. J. Mod. Phys. A 7, 5337 (1992). 8. L. Alvarez-Gaume, K. Becker, M. Becker, R. Emperan, and J. Maiies, Int. J. Mod. Phys. A 8, 2297 (1993). 9. K. Becker and M. Becker, Mod. Phys. Lett. A 8, 1205 (1993). 10. M. Mañas, L. Martínez Alonso, and E. Medina, Phys. Lett. B 336, 178 (1994). 11. E. J. Martinet and G. M. Sotkov, Phys. Lett. B 208, 249 (1988). 12. A. LeClair, Nucl. Phys. B 314,425 (1989). 13. R. Beak and R. R. Coifman, Physica D 18, 242 (1986). 14. M. J. Ablowitz, D. Bar Jacob, and A. S. Fokas, Stud. Appl. Math. 69, 135 (1983). 15. M. Jaulent, M. Manna, and L. Martinez Alonso, Inverse Problems 4, 123 (1988). 16. K. Ueno, H. Yamada, and K. Ikeda, Commun. Math. Phys. 124, 57 (1989).
dspace.entity.typePublication
relation.isAuthorOfPublication896aafc0-9740-4609-bc38-829f249a0d2b
relation.isAuthorOfPublication.latestForDiscovery896aafc0-9740-4609-bc38-829f249a0d2b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
martinezalonso61libre.pdf
Size:
939.18 KB
Format:
Adobe Portable Document Format

Collections