Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Polarimetric pixel using Seebeck nanoantennas

dc.contributor.authorCuadrado, Alexander
dc.contributor.authorBriones, Edgar
dc.contributor.authorGonzález, Francisco Javier
dc.contributor.authorAlda, Javier
dc.date.accessioned2023-06-19T13:32:30Z
dc.date.available2023-06-19T13:32:30Z
dc.date.issued2014-05-30
dc.descriptionThis paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: [http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-11-13835]. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.
dc.description.abstractOptical nanoantennas made of two metals are proposed to produce a Seebeck voltage proportional to the Stokes parameters of a light beam. The analysis is made using simulations in the electromagnetic and thermal domains. Each Stokes parameter is independently obtained from a dedicated nanoantenna configuration. S1 and S2 rely on the combination of two orthogonal dipoles. S3 is given by arranging two Archimedian spirals with opposite orientations. The analysis also includes an evaluation of the error associated with the Seebeck voltage, and the crosstalk between Stokes parameters. The results could lead to the conception of polarization sensors having a receiving area smaller than 10λ 2. We illustrate these findings with a design of a polarimetric pixel.
dc.description.departmentSección Deptal. de Óptica (Óptica)
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación de España
dc.description.sponsorship“Fondo Sectorial CONACYT-Secretaría de Energía-Sustentabilidad Energética
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnología of México
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29505
dc.identifier.doi10.1364/OE.22.013835
dc.identifier.issn1094-4087
dc.identifier.officialurlhttp://dx.doi.org/10.1364/OE.22.013835
dc.identifier.relatedurlhttp://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13835
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33974
dc.issue.number11
dc.journal.titleOptics Express
dc.language.isoeng
dc.page.final13845
dc.page.initial13835
dc.publisherOptical Society of America (OSA)
dc.relation.projectIDproject ENE2009-14340
dc.relation.projectIDproject “Centro Mexicano de Innovación en Energía Solar”
dc.relation.projectIDgrant CV-45809
dc.rights.accessRightsrestricted access
dc.subject.cdu535
dc.subject.cdu537.533.3
dc.subject.keywordPolarization-selective devices
dc.subject.keywordPlasmonics
dc.subject.keywordPolarimetric imaging
dc.subject.keywordThermal (uncooled) IR detectors
dc.subject.keywordarrays and imaging
dc.subject.ucmElectrónica (Física)
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titlePolarimetric pixel using Seebeck nanoantennas
dc.typejournal article
dc.volume.number22
dcterms.references1. P. Bharadwaj, B. Deutsch, L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009). 2. L. Novotny, N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011). 3. J. Alda, C. Fumeaux, I. Codreanu, J. Schaefer, G. Boreman, “A deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1998). 4. L. Tang, S. E. Kocabas, S. Latif, A. k. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-field dipole antenna,” Nat. Photonics 2, 226–229 (2008). 5. C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothouizen, “Nanometer thin-film Bi-NiO-Bi diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998). 6. F. Gonzalez, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005). 7. A. Cuadrado, J. Alda, F. J. Gonzalez, “Distributed bolometric effect in optical antennas and resonant structures,” J. Nanophotonics 6, 063512 (2012). 8. A. Cuadrado, J. Alda, F. J. Gonzalez, “Multiphysics simulation of optical nanoantennas working as distributed bolometers in ther infrared,” J. Nanophotonics 7, 073093 (2013). 9. A. Cuadrado, M. Silva-López, F. J. González, J. Alda, “Robustness of antenna-coupled distributed bolometers,” Opt. Lett. 38(19), 3784–3787 (2013). 10. C. Fu, “Antenna-coupled Thermopiles,” M.S. Dissertation, University of Central Florida, (1998). 11. G. P. Szakmany, P. Krenz, L. C. Scheneider, A. O. Orlov, G. H. Bernstein, W. Porod, “Nanowire thermocouple characterization plattform,” IEEE Trans. Nanotechnol. 12(3), 309–313 (2013). 12. D. M. Rowe, Thermoelectrics Handbook: Macro to Nano (Taylor and Francis, 2006). 13. F. J. Gonzalez, C. Fumeaux, J. Alda, G. D. Boreman, “Thermal-impedance model of electrostatic discharge effects on microbolometers,” Microwave Opt. Technol. Lett. 26, 291–293 (2000). 14. G. Baffou, C. Girard, R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 36805 (2010). 15. R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, J. E. Vaillancourt, “A primer on far-infrared poarimetry,” Publ. Astron. Soc. Pac. 112, 1215–1235 (2000). 16. J. Scott Tyo, D. L. Goldstein, D. B. Chenault, J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). 17. F. Goudail, J. Scott Tyo, “When is polarimetric imaging preferable to intensity imaging for target detection?” J. Opt. Soc. Am. A 28(1), 46–53 (2011). 18. J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J-Appl. Phys. 40, 1–47 (2007). 19. R. Martinez-Herrero, P. M. Mejías, G. Piquero, V. Ramírez-Sánchez, “Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams,” Opt. Commun. 281, 1976–1980 (2008). 20. G. P. Nording, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A. 16(5), 1168–1174 (1999). 21. M. W. Kudenov, J. L. Pezzaniti, G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009). 22. P. Krenz, J. Alda, G. Boreman, “Orthogonal infrared dipole antenna,” Infrared Phys. & Technol. 51(4), 340–343 (2008). 23. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977, Chap. I). 24. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). 25. C. G. Mattsson, K. Bertilssson, G. Thungström, H.-E. Nilsson, H. Martin, “Thermal simulation and design optimization of a thermopile infrared detector with a SU-8 membrane,” J. Michromech. Microeng. 19, 055016 (2009). 26. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1997, Vol. III).
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Alda-polarimetric pixel_2014.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format

Collections