Polarimetric pixel using Seebeck nanoantennas
dc.contributor.author | Cuadrado, Alexander | |
dc.contributor.author | Briones, Edgar | |
dc.contributor.author | González, Francisco Javier | |
dc.contributor.author | Alda, Javier | |
dc.date.accessioned | 2023-06-19T13:32:30Z | |
dc.date.available | 2023-06-19T13:32:30Z | |
dc.date.issued | 2014-05-30 | |
dc.description | This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: [http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-11-13835]. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law. | |
dc.description.abstract | Optical nanoantennas made of two metals are proposed to produce a Seebeck voltage proportional to the Stokes parameters of a light beam. The analysis is made using simulations in the electromagnetic and thermal domains. Each Stokes parameter is independently obtained from a dedicated nanoantenna configuration. S1 and S2 rely on the combination of two orthogonal dipoles. S3 is given by arranging two Archimedian spirals with opposite orientations. The analysis also includes an evaluation of the error associated with the Seebeck voltage, and the crosstalk between Stokes parameters. The results could lead to the conception of polarization sensors having a receiving area smaller than 10λ 2. We illustrate these findings with a design of a polarimetric pixel. | |
dc.description.department | Sección Deptal. de Óptica (Óptica) | |
dc.description.faculty | Fac. de Óptica y Optometría | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación de España | |
dc.description.sponsorship | “Fondo Sectorial CONACYT-Secretaría de Energía-Sustentabilidad Energética | |
dc.description.sponsorship | Consejo Nacional de Ciencia y Tecnología of México | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/29505 | |
dc.identifier.doi | 10.1364/OE.22.013835 | |
dc.identifier.issn | 1094-4087 | |
dc.identifier.officialurl | http://dx.doi.org/10.1364/OE.22.013835 | |
dc.identifier.relatedurl | http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13835 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/33974 | |
dc.issue.number | 11 | |
dc.journal.title | Optics Express | |
dc.language.iso | eng | |
dc.page.final | 13845 | |
dc.page.initial | 13835 | |
dc.publisher | Optical Society of America (OSA) | |
dc.relation.projectID | project ENE2009-14340 | |
dc.relation.projectID | project “Centro Mexicano de Innovación en Energía Solar” | |
dc.relation.projectID | grant CV-45809 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 535 | |
dc.subject.cdu | 537.533.3 | |
dc.subject.keyword | Polarization-selective devices | |
dc.subject.keyword | Plasmonics | |
dc.subject.keyword | Polarimetric imaging | |
dc.subject.keyword | Thermal (uncooled) IR detectors | |
dc.subject.keyword | arrays and imaging | |
dc.subject.ucm | Electrónica (Física) | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Polarimetric pixel using Seebeck nanoantennas | |
dc.type | journal article | |
dc.volume.number | 22 | |
dcterms.references | 1. P. Bharadwaj, B. Deutsch, L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009). 2. L. Novotny, N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011). 3. J. Alda, C. Fumeaux, I. Codreanu, J. Schaefer, G. Boreman, “A deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1998). 4. L. Tang, S. E. Kocabas, S. Latif, A. k. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-field dipole antenna,” Nat. Photonics 2, 226–229 (2008). 5. C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothouizen, “Nanometer thin-film Bi-NiO-Bi diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998). 6. F. Gonzalez, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005). 7. A. Cuadrado, J. Alda, F. J. Gonzalez, “Distributed bolometric effect in optical antennas and resonant structures,” J. Nanophotonics 6, 063512 (2012). 8. A. Cuadrado, J. Alda, F. J. Gonzalez, “Multiphysics simulation of optical nanoantennas working as distributed bolometers in ther infrared,” J. Nanophotonics 7, 073093 (2013). 9. A. Cuadrado, M. Silva-López, F. J. González, J. Alda, “Robustness of antenna-coupled distributed bolometers,” Opt. Lett. 38(19), 3784–3787 (2013). 10. C. Fu, “Antenna-coupled Thermopiles,” M.S. Dissertation, University of Central Florida, (1998). 11. G. P. Szakmany, P. Krenz, L. C. Scheneider, A. O. Orlov, G. H. Bernstein, W. Porod, “Nanowire thermocouple characterization plattform,” IEEE Trans. Nanotechnol. 12(3), 309–313 (2013). 12. D. M. Rowe, Thermoelectrics Handbook: Macro to Nano (Taylor and Francis, 2006). 13. F. J. Gonzalez, C. Fumeaux, J. Alda, G. D. Boreman, “Thermal-impedance model of electrostatic discharge effects on microbolometers,” Microwave Opt. Technol. Lett. 26, 291–293 (2000). 14. G. Baffou, C. Girard, R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 36805 (2010). 15. R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, J. E. Vaillancourt, “A primer on far-infrared poarimetry,” Publ. Astron. Soc. Pac. 112, 1215–1235 (2000). 16. J. Scott Tyo, D. L. Goldstein, D. B. Chenault, J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). 17. F. Goudail, J. Scott Tyo, “When is polarimetric imaging preferable to intensity imaging for target detection?” J. Opt. Soc. Am. A 28(1), 46–53 (2011). 18. J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J-Appl. Phys. 40, 1–47 (2007). 19. R. Martinez-Herrero, P. M. Mejías, G. Piquero, V. Ramírez-Sánchez, “Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams,” Opt. Commun. 281, 1976–1980 (2008). 20. G. P. Nording, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A. 16(5), 1168–1174 (1999). 21. M. W. Kudenov, J. L. Pezzaniti, G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009). 22. P. Krenz, J. Alda, G. Boreman, “Orthogonal infrared dipole antenna,” Infrared Phys. & Technol. 51(4), 340–343 (2008). 23. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977, Chap. I). 24. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). 25. C. G. Mattsson, K. Bertilssson, G. Thungström, H.-E. Nilsson, H. Martin, “Thermal simulation and design optimization of a thermopile infrared detector with a SU-8 membrane,” J. Michromech. Microeng. 19, 055016 (2009). 26. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1997, Vol. III). | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Alda-polarimetric pixel_2014.pdf
- Size:
- 1.55 MB
- Format:
- Adobe Portable Document Format