Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

Optimization of Temperature Sensing with Polymer-Embedded Luminescent Ru(II) Complexes

dc.contributor.authorBustamante Álvarez, Nelia
dc.contributor.authorIelasi, Guido
dc.contributor.authorBedoya, Maximino
dc.contributor.authorOrellana Moraleda, Guillermo
dc.date.accessioned2023-06-17T12:37:24Z
dc.date.available2023-06-17T12:37:24Z
dc.date.issued2018-02-26
dc.description.abstractTemperature is a key parameter in many fields and luminescence-based temperature sensing is a solution for those applications in which traditional (mechanical, electrical, or IR-based) thermometers struggle. Amongst the indicator dyes for luminescence thermometry, Ru(II) polyazaheteroaromatic complexes are an appealing option to profit from the widespread commercial technologies for oxygen optosensing based on them. Six ruthenium dyes have been studied, engineering their structure for both photostability and highest temperature sensitivity of their luminescence. The most apt Ru(II) complex turned out to be bis(1,10-phenanthroline)(4-chloro-1,10-phenanthroline)ruthenium(II), due to the combination of two strong-field chelating ligands (phen) and a substituent with electron withdrawing effect on a conjugated position of the third ligand (4-Clphen). In order to produce functional sensors, the dye has been best embedded into poly(ethyl cyanoacrylate), due to its low permeability to O2, high temperature sensitivity of the indicator dye incorporated into this polymer, ease of fabrication, and excellent optical quality. Thermosensitive elements have been fabricated thereof as optical fiber tips for macroscopic applications (water courses monitoring) and thin spots for microscopic uses (temperature measurements in cell culture-on-a-chip). With such dye/polymer combination, temperature sensing based on luminescence lifetime measurements allows 0.05 °C resolution with linear response in the range of interest (0–40 °C).
dc.description.departmentDepto. de Química Orgánica
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/66772
dc.identifier.doi10.3390/polym10030234
dc.identifier.issn2073-4360
dc.identifier.officialurlhttps://doi.org/10.3390/polym10030234
dc.identifier.relatedurlhttps://www.mdpi.com/2073-4360/10/3/234
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12643
dc.issue.number3
dc.journal.titlePolymers
dc.language.isoeng
dc.page.initial234
dc.publisherMDPI
dc.relation.projectIDSAMOSS (607590)
dc.relation.projectIDCTQ2015-69278-C2-2-R
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordtemperature
dc.subject.keywordluminescent sensors
dc.subject.keywordluminescence lifetime
dc.subject.keywordoptical fiber
dc.subject.keywordRu(II) dyes
dc.subject.keywordpoly(ethyl cyanoacrylate)
dc.subject.keywordwater monitoring
dc.subject.ucmQuímica orgánica (Química)
dc.subject.unesco2306 Química Orgánica
dc.titleOptimization of Temperature Sensing with Polymer-Embedded Luminescent Ru(II) Complexes
dc.typejournal article
dc.volume.number10
dspace.entity.typePublication
relation.isAuthorOfPublicationdefd6c32-fdda-4eae-8e60-5942fcbed64b
relation.isAuthorOfPublication.latestForDiscoverydefd6c32-fdda-4eae-8e60-5942fcbed64b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
polymers-10-00234.pdf
Size:
3.82 MB
Format:
Adobe Portable Document Format

Collections