Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the geometry of moduli spaces of coherent systems on algebraic curves.

Loading...
Thumbnail Image

Full text at PDC

Publication date

2007

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

World Scientific
Citations
Google Scholar

Citation

Abstract

Let C be an algebraic curve of genus g ≥ 2. A coherent system on C consists of a pair (E, V ), where E is an algebraic vector bundle over C of rank n and degree d and V is a subspace of dimension k of the space of sections of E. The stability of the coherent system depends on a parameter a. We study the geometry of the moduli space of coherent systems for different values of a when k ≤ n and the variation of the moduli spaces when we vary a. As a consequence, for sufficiently large , we compute the Picard groups and the first and second homotopy groups of the moduli spaces of coherent systems in almost all cases, describe the moduli space for the case k = n − 1 explicitly, and give the Poincare polynomials for the case k = n − 2. In an appendix, we describe the geometry of the “flips” which take place at critical values of a in the simplest case, and include a proof of the existence of universal families of coherent systems when GCD(n, d, k)= 1.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections