Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Finite rank perturbations of normal operators: spectral idempotents and decomposability

Loading...
Thumbnail Image

Full text at PDC

Publication date

2023

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

ELSEVIER
Citations
Google Scholar

Citation

Abstract

We prove that a large class of finite rank perturbations of diagonal operators and, in general, of diagonalizable normal operators of multiplicity one acting boundedly on a separable, infinite dimensional complex Hilbert space are decomposable operators in the sense of Colojoară and Foiaş [1]. Consequently, every operator T in such a class has a rich spectral structure and plenty of non-trivial closed hyperinvariant subspaces which extends, in particular, previous theorems of Foiaş, Jung, Ko and Pearcy [5], [6], [7], Fang and J. Xia [3] and the authors [8], [9] on an open question posed by Pearcy in the seventies.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections