Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A new modularity measure for Fuzzy Community detection problems based on overlap and grouping functions

dc.contributor.authorGómez González, Daniel
dc.contributor.authorRodríguez González, Juan Tinguaro
dc.contributor.authorYáñez Gestoso, Francisco Javier
dc.contributor.authorMontero De Juan, Francisco Javier
dc.date.accessioned2023-06-18T06:52:37Z
dc.date.available2023-06-18T06:52:37Z
dc.date.issued2016
dc.description.abstractOne of the main challenges of fuzzy community detection problems is to be able to measure the quality of a fuzzy partition. In this paper, we present an alternative way of measuring the quality of a fuzzy community detection output based on n-dimensional grouping and overlap functions. Moreover, the proposed modularity measure generalizes the classical Girvan–Newman (GN) modularity for crisp community detection problems and also for crisp overlapping community detection problems. Therefore, it can be used to compare partitions of different nature (i.e. those composed of classical, overlapping and fuzzy communities). Particularly, as is usually done with the GN modularity, the proposed measure may be used to identify the optimal number of communities to be obtained by any network clustering algorithm in a given network. We illustrate this usage by adapting in this way a well-known algorithm for fuzzy community detection problems, extending it to also deal with overlapping community detection problems and produce a ranking of the overlapping nodes. Some computational experiments show the feasibility of the proposed approach to modularity measures through n-dimensional overlap and grouping functions.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37647
dc.identifier.citationGómez, D., Tinguaro Rodríguez, J., Yáñez, J., Montero, J.: A new modularity measure for Fuzzy Community detection problems based on overlap and grouping functions. International Journal of Approximate Reasoning. 74, 88-107 (2016). https://doi.org/10.1016/j.ijar.2016.03.003
dc.identifier.doi10.1016/j.ijar.2016.03.003
dc.identifier.issn0888-613X
dc.identifier.officialurlhttps//doi.org/10.1016/j.ijar.2016.03.003
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S0888613X16300305
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24472
dc.journal.titleInternational Journal of Approximate Reasoning
dc.language.isoeng
dc.page.final107
dc.page.initial88
dc.publisherElsevier Science INC
dc.relation.projectIDTIN2012-32482
dc.relation.projectIDCASI-CAM-CM (S2013/ICCE-2845)
dc.relation.projectIDResearch Group 910149
dc.rights.accessRightsrestricted access
dc.subject.cdu519.8
dc.subject.keywordAggregation operators
dc.subject.keywordGrouping functions
dc.subject.keywordOverlap functions
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleA new modularity measure for Fuzzy Community detection problems based on overlap and grouping functionsen
dc.typejournal article
dc.volume.number74
dspace.entity.typePublication
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublicationddad170a-793c-4bdc-b983-98d313c81b03
relation.isAuthorOfPublication5ce22aab-a4c1-4dfe-b8f9-78e09cbd2878
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication.latestForDiscovery4dcf8c54-8545-4232-8acf-c163330fd0fe

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero264.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format

Collections