Global structure of subharmonics in a class of periodic predator-prey models
dc.contributor.author | López Gómez, Julián | |
dc.contributor.author | Muñoz Hernández, Eduardo | |
dc.date.accessioned | 2024-01-16T17:15:19Z | |
dc.date.available | 2024-01-16T17:15:19Z | |
dc.date.issued | 2019 | |
dc.description.abstract | This paper ascertains the global topological structure of the set of subharmonics of arbitrary order of the periodic predator-prey model introduced in López-Gómez et al (1996 Adv. Differ. Equ. 1 403–23). By constructing the iterates of the monodromy operator of the system, it is shown that the system admits subharmonics of all orders for the appropriate ranges of values of the parameters. Then, some sharp results of topological nature in the context of global bifurcation theory provide us with the fine topological structure of the components of subharmonics emanating from the T-periodic coexistence state. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades (España) | |
dc.description.status | pub | |
dc.identifier.citation | J. López-Gómez, E. Muñoz-Hernández, Global structure of subharmonics in a class of periodic predator-prey models, Nonlinearity 33 (2020) 34–71. https://doi.org/10.1088/1361-6544/ab49e1. | |
dc.identifier.doi | 10.1088/1361-6544/ab49e1 | |
dc.identifier.essn | 1361-6544 | |
dc.identifier.issn | 0951-7715 | |
dc.identifier.officialurl | https://doi.org/10.1088/1361-6544/ab49e1 | |
dc.identifier.relatedurl | https://iopscience.iop.org/article/10.1088/1361-6544/ab49e1 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/93458 | |
dc.issue.number | 1 | |
dc.journal.title | Nonlinearity | |
dc.language.iso | eng | |
dc.page.final | 71 | |
dc.page.initial | 34 | |
dc.publisher | IOP | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO/PROBLEMAS ELIPTICOS Y PARABOLICOS NO LINEALES/MTM2015-65899-P | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI%Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/SISTEMAS DE REACCION DIFUSION/PGC2018-097104-B-I00 | |
dc.rights.accessRights | restricted access | |
dc.subject.keyword | Periodic predator-prey model | |
dc.subject.keyword | Subharmonic coexistence states | |
dc.subject.keyword | Structure of the set of bifurcation points | |
dc.subject.keyword | Global bifurcation diagrams | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.19 Ecuaciones Diferenciales Ordinarias | |
dc.title | Global structure of subharmonics in a class of periodic predator-prey models | en |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 33 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 27effbc8-f76e-4c18-8514-82cf8fe8ccbf | |
relation.isAuthorOfPublication | 6257d3ed-79fd-46b2-a66b-f0c8b166abc7 | |
relation.isAuthorOfPublication.latestForDiscovery | 27effbc8-f76e-4c18-8514-82cf8fe8ccbf |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Global_structure_of_subharmonics.pdf
- Size:
- 1.76 MB
- Format:
- Adobe Portable Document Format