Publication:
Árboles de Decisión: el modelo C4.5

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2021-09-26
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Intuimos fácilmente lo que es un Árbol de Decisión. Nos imaginamos un conjunto de nodos y ramas por las que vamos decidiendo en base a preguntas o acciones que se nos plantean. Si tenemos que clasificar un evento, un conjunto de preguntas nos saldrán al paso según discurrimos por las ramas y las respuestas a ellas nos harán decantarnos por unas nuevas ramas y desdeñar otras. Existen formas automáticas de generar el mejor árbol de decisión dadas las características de un conjunto de datos y la variable a predecir. La idea es generar el árbol de decisión con alta capacidad predictiva pero lo menos profundo posible, con el menor número de preguntas, y lo más generalizable a eventos o ejemplares que no han participado en su generación. Es de esto de lo que se ocupará este texto. De estudiar una de esas formas: el algoritmo C4.5.
Description
Keywords
Citation