On universal groups and three-manifolds
| dc.contributor.author | Montesinos Amilibia, José María | |
| dc.contributor.author | Hilden, Hugh Michael | |
| dc.contributor.author | Lozano Imízcoz, María Teresa | |
| dc.contributor.author | Whitten, Wilbur Carrington | |
| dc.date.accessioned | 2023-06-21T02:02:38Z | |
| dc.date.available | 2023-06-21T02:02:38Z | |
| dc.date.issued | 1987 | |
| dc.description.abstract | Let P be a regular dodecahedron in the hyperbolic 3-space H3with the dihedral angles 90∘. Choose 6 mutually disjoint edgesE1,E2,⋯,E6 of P such that each face of P intersects E1∪E2∪⋯∪E6 in one edge and the opposite vertex. Let U be the group of orientation-preserving isometries of H3 generated by 90∘-rotations about E1,⋯,E6. It was observed by W. Thurston that H3/U=S3 and that the projection H3→H3/U is a covering branched over the Borromean rings with branching indices 4. The main result of the paper is the following universality of U. Theorem: For every closed, oriented 3-manifold M there exists a subgroup G of U of finite index such that M=H3/G. In other words M is a hyperbolic orbifold finitely covering the hyperbolic orbifold H3/U. The main ingredient of the proof is the strict form of the universality of the Borromean rings (earlier obtained by the first three authors): each closed, oriented 3-manifold is shown to be a covering of S3 branched over the Borromean rings with indices 1, 2, 4. This theorem offers a new approach to the Poincaré conjecture: If M=H3/G as above and π1(M)=1 then G is generated by elements of finite order. The authors start off an algebraic investigation of U⊂PSL2(C) by constructing three generators of U which are 2×2 matrices over the ring of algebraic integers in the field Q(2√,3√,5√,1√+5√,−1−−−√). | |
| dc.description.department | Depto. de Álgebra, Geometría y Topología | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Comité Conjunto Hispano-Norteamericano | |
| dc.description.sponsorship | NSF | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/17162 | |
| dc.identifier.doi | 10.1007/BF01389236 | |
| dc.identifier.issn | 0020-9910 | |
| dc.identifier.officialurl | http://www.springerlink.com/content/k332884x7m10l654/ | |
| dc.identifier.relatedurl | http://www.springerlink.com/ | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/64691 | |
| dc.issue.number | 3 | |
| dc.journal.title | Inventiones Mathematicae | |
| dc.language.iso | eng | |
| dc.page.final | 456 | |
| dc.page.initial | 441 | |
| dc.publisher | Springer-Verlag | |
| dc.relation.projectID | 8120790 | |
| dc.rights.accessRights | restricted access | |
| dc.subject.cdu | 515.1 | |
| dc.subject.keyword | regular dodecahedron | |
| dc.subject.keyword | hyperbolic 3-space | |
| dc.subject.keyword | covering branched over the Borromean rings | |
| dc.subject.keyword | 3-manifold | |
| dc.subject.keyword | hyperbolic orbifold | |
| dc.subject.keyword | Poincaré conjecture | |
| dc.subject.keyword | PSL 2 (bbfC) | |
| dc.subject.ucm | Topología | |
| dc.subject.unesco | 1210 Topología | |
| dc.title | On universal groups and three-manifolds | |
| dc.type | journal article | |
| dc.volume.number | 87 | |
| dcterms.references | Armstrong, M.A.: The fundamental group of the orbit space of a discontinuous group. Proc. Camb. Phil. Soc.64, 299–301 (1968) Fox, R.H.: A note on branched cyclic coverings of spheres. Rev. Mat. Hisp.-Am.32, 158–166 (1972) Fox, R.H.: Covering spaces with singularities. Algebraic geometry and topology. A symposium in honor of S. Lefschetz. Princeton 1957 Hilden, H.: Every closed, orientable 3-manifold is a 3-fold branched covering space ofS 3. Bull. Am. Math. Soc.80, 1243–1244 (1974) Hilden, H., Lozano, M., Montesinos, J.: The Whitehead link, the Borromean rings and the Knot 946 are universal. Collect. Math.34, 19–28 (1983) Hilden, H., Lozano, M., Montesinos, J.: Universal knots. Lect. Notes Math.1144 (D. Rolfsen (ed.)) 1985 Hilden, H., Lozano, M., Montesinos, J.: On knots that are universal. Topology24, 499–504 (1985) Hirsch, U.: Über offene Abbildungen auf die 3-sphäre. Math. Z.140, 203–230 (1974) Morgan, J.W., Bass, H.: The Smith Conjecture. Academic Press, 1984 Montesinos, J.: A representation of closed, orientable 3-manifolds as 3-fold branched coverings ofS 3. Bull. Am. Math. Soc.80, 845–846 (1974) Montesinos, J.: Sobre la Conjetura de Poincaré y los recubridores ramificades sobre un nudo. Ph. D. Thesis, Madrid, 1971 Montesinos, J.: Una nota a un teorema de Alexander. Rev. Mat. Hisp.-Am.32, 167–187 (1972) Thurston, W.: Universal Links (preprint, 1982) Thurston, W.: The geometry and topology of three-manifolds. Princeton University Press (to appear 1977/1978) | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
| relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |
Download
Original bundle
1 - 1 of 1

