On universal groups and three-manifolds

dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.authorHilden, Hugh Michael
dc.contributor.authorLozano Imízcoz, María Teresa
dc.contributor.authorWhitten, Wilbur Carrington
dc.date.accessioned2023-06-21T02:02:38Z
dc.date.available2023-06-21T02:02:38Z
dc.date.issued1987
dc.description.abstractLet P be a regular dodecahedron in the hyperbolic 3-space H3with the dihedral angles 90∘. Choose 6 mutually disjoint edgesE1,E2,⋯,E6 of P such that each face of P intersects E1∪E2∪⋯∪E6 in one edge and the opposite vertex. Let U be the group of orientation-preserving isometries of H3 generated by 90∘-rotations about E1,⋯,E6. It was observed by W. Thurston that H3/U=S3 and that the projection H3→H3/U is a covering branched over the Borromean rings with branching indices 4. The main result of the paper is the following universality of U. Theorem: For every closed, oriented 3-manifold M there exists a subgroup G of U of finite index such that M=H3/G. In other words M is a hyperbolic orbifold finitely covering the hyperbolic orbifold H3/U. The main ingredient of the proof is the strict form of the universality of the Borromean rings (earlier obtained by the first three authors): each closed, oriented 3-manifold is shown to be a covering of S3 branched over the Borromean rings with indices 1, 2, 4. This theorem offers a new approach to the Poincaré conjecture: If M=H3/G as above and π1(M)=1 then G is generated by elements of finite order. The authors start off an algebraic investigation of U⊂PSL2(C) by constructing three generators of U which are 2×2 matrices over the ring of algebraic integers in the field Q(2√,3√,5√,1√+5√,−1−−−√).
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipComité Conjunto Hispano-Norteamericano
dc.description.sponsorshipNSF
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17162
dc.identifier.doi10.1007/BF01389236
dc.identifier.issn0020-9910
dc.identifier.officialurlhttp://www.springerlink.com/content/k332884x7m10l654/
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64691
dc.issue.number3
dc.journal.titleInventiones Mathematicae
dc.language.isoeng
dc.page.final456
dc.page.initial441
dc.publisherSpringer-Verlag
dc.relation.projectID8120790
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordregular dodecahedron
dc.subject.keywordhyperbolic 3-space
dc.subject.keywordcovering branched over the Borromean rings
dc.subject.keyword3-manifold
dc.subject.keywordhyperbolic orbifold
dc.subject.keywordPoincaré conjecture
dc.subject.keywordPSL 2 (bbfC)
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn universal groups and three-manifolds
dc.typejournal article
dc.volume.number87
dcterms.referencesArmstrong, M.A.: The fundamental group of the orbit space of a discontinuous group. Proc. Camb. Phil. Soc.64, 299–301 (1968) Fox, R.H.: A note on branched cyclic coverings of spheres. Rev. Mat. Hisp.-Am.32, 158–166 (1972) Fox, R.H.: Covering spaces with singularities. Algebraic geometry and topology. A symposium in honor of S. Lefschetz. Princeton 1957 Hilden, H.: Every closed, orientable 3-manifold is a 3-fold branched covering space ofS 3. Bull. Am. Math. Soc.80, 1243–1244 (1974) Hilden, H., Lozano, M., Montesinos, J.: The Whitehead link, the Borromean rings and the Knot 946 are universal. Collect. Math.34, 19–28 (1983) Hilden, H., Lozano, M., Montesinos, J.: Universal knots. Lect. Notes Math.1144 (D. Rolfsen (ed.)) 1985 Hilden, H., Lozano, M., Montesinos, J.: On knots that are universal. Topology24, 499–504 (1985) Hirsch, U.: Über offene Abbildungen auf die 3-sphäre. Math. Z.140, 203–230 (1974) Morgan, J.W., Bass, H.: The Smith Conjecture. Academic Press, 1984 Montesinos, J.: A representation of closed, orientable 3-manifolds as 3-fold branched coverings ofS 3. Bull. Am. Math. Soc.80, 845–846 (1974) Montesinos, J.: Sobre la Conjetura de Poincaré y los recubridores ramificades sobre un nudo. Ph. D. Thesis, Madrid, 1971 Montesinos, J.: Una nota a un teorema de Alexander. Rev. Mat. Hisp.-Am.32, 167–187 (1972) Thurston, W.: Universal Links (preprint, 1982) Thurston, W.: The geometry and topology of three-manifolds. Princeton University Press (to appear 1977/1978)
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos08.pdf
Size:
634.55 KB
Format:
Adobe Portable Document Format

Collections