Optomagnetic nanofluids for controlled brain hyperthermia: a critical study
dc.contributor.author | Méndez González, Diego | |
dc.contributor.author | Lifante, José | |
dc.contributor.author | Zabala Gutiérrez, Irene | |
dc.contributor.author | Marin, Riccardo | |
dc.contributor.author | Ximendes, Erving | |
dc.contributor.author | Sanz-de Diego, Elena | |
dc.contributor.author | Iglesias-de la Cruz, M. Carmen | |
dc.contributor.author | Teran, Francisco J. | |
dc.contributor.author | Rubio Retama, Benito Jorge | |
dc.contributor.author | Jaque, Daniel | |
dc.date.accessioned | 2024-02-12T09:45:17Z | |
dc.date.available | 2024-02-12T09:45:17Z | |
dc.date.issued | 2022-10-16 | |
dc.description.abstract | Optomagnetic nanofluids (OMNFs) are colloidal dispersions of nanoparticles (NPs) with combined magnetic and optical properties. They are especially appealing in biomedicine since they can be used as minimally invasive platforms for controlled hyperthermia treatment of otherwise difficultly accessible tumors such as intracranial ones. On the one hand, magnetic NPs act as heating mediators when subjected to alternating magnetic fields or light irradiation. On the other hand, suitably tailored luminescent NPs can provide a precise and remote thermal readout in real time. The combination of heating and thermometric properties allows, in principle, to precisely monitor the increase in the temperature of brain tumors up to the therapeutic level, without causing undesired collateral damage. In this work we demonstrate that this view is an oversimplification since it ignores the presence of relevant interactions between magnetic (γ-Fe2O3 nanoflowers) and luminescent nanoparticles (Ag2S NPs) that result in a detrimental alteration of their physicochemical properties. The magnitude of such interactions depends on the interparticle distance and on the surface properties of nanoparticles. Experiments performed in mouse brains (phantoms and ex vivo) revealed that OMNFs cannot induce relevant heating under alternating magnetic fields and fail to provide reliable temperature reading. In contrast, we demonstrate that the use of luminescent nanofluids (containing only Ag2S NPs acting as both photothermal agents and nanothermometers) stands out as a better alternative for thermally monitored hyperthermia treatment of brain tumors in small animal models. | eng |
dc.description.department | Depto. de Química en Ciencias Farmacéuticas | |
dc.description.faculty | Fac. de Farmacia | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | European Commission | |
dc.description.sponsorship | Ministerio de Economía, Comercio y Empresa (España) | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades (España) | |
dc.description.sponsorship | Horizon 2020 | |
dc.description.sponsorship | Instituto Ramón y Cajal de Investigación Sanitaria | |
dc.description.status | pub | |
dc.identifier.citation | Mendez-Gonzalez D, Lifante J, Zabala Gutierrez I, Marin R, Ximendes E, Sanz-de Diego E, et al. Optomagnetic nanofluids for controlled brain hyperthermia: a critical study. Nanoscale 2022;14:16208–19. https://doi.org/10.1039/D2NR03413A. | |
dc.identifier.doi | 10.1039/D2NR03413A | |
dc.identifier.essn | 2040-3372 | |
dc.identifier.issn | 2040-3364 | |
dc.identifier.officialurl | https://doi.org/10.1039/D2NR03413A | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/101176 | |
dc.journal.title | Nanoscale | |
dc.language.iso | eng | |
dc.page.final | 16219 | |
dc.page.initial | 16208 | |
dc.publisher | ROYAL SOCIETY OF CHEMISTRY. THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND | |
dc.relation.projectID | info:eu-repo/grantAgreement/P2022/BMD7403 RENIM-CM | |
dc.relation.projectID | info:eu-repo/grantAgreement/NANOMAGCOST/P2018/NMT-4321 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO/PID2021-123318-OB-I00 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO/MAT2017-85617-R | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO/SEV-2016-0686 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO/PID2019-106211RB-I00 | |
dc.relation.projectID | info:eu-repo/grantAgreement/HIPERNANO/RED2018–102626–T | |
dc.relation.projectID | info:eu-repo/grantAgreement/PR38/21-36 | |
dc.relation.projectID | info:eu-repo/grantAgreement/801305 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 615:54 | |
dc.subject.cdu | 615.31 | |
dc.subject.ucm | Ciencias Biomédicas | |
dc.subject.ucm | Química | |
dc.subject.unesco | 23 Química | |
dc.title | Optomagnetic nanofluids for controlled brain hyperthermia: a critical study | |
dc.type | journal article | |
dc.type.hasVersion | AM | |
dc.volume.number | 14 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | b7cbb23c-2419-4694-9478-22cbcc2a3e69 | |
relation.isAuthorOfPublication | 24f8ceb9-f02a-41ac-851f-5182f31d41a4 | |
relation.isAuthorOfPublication | e472b936-73b0-45a5-b92a-7b3be8543cc8 | |
relation.isAuthorOfPublication.latestForDiscovery | b7cbb23c-2419-4694-9478-22cbcc2a3e69 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Optomagnetic nanofluids for controlled brain hyperthermia_a critical study.pdf
- Size:
- 1.29 MB
- Format:
- Adobe Portable Document Format