Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Markovian Controllable Queueing Systems with Hysteretic Policies: Busy Period and Waiting Time Analysis

dc.contributor.authorArtalejo Rodríguez, Jesús Manuel
dc.contributor.authorEconomou, Antonis
dc.date.accessioned2023-06-20T09:36:15Z
dc.date.available2023-06-20T09:36:15Z
dc.date.issued2005-09
dc.descriptionThe authors thank the referee for the constructive suggestions on the earlier version of this paper. Jesus Artalejo thanks the support received from the research project BFM2002-02189. Antonis Economou was supported by the University of Athens grant ELKE/70/4/6415 and by the European Union and the Greek Ministry of Education program PYTHAGORAS/2004.
dc.description.abstractWe study Markovian queueing systems in which the service rate varies whenever the queue length changes. More specifically we consider controllable queues operating under the so-called hysteretic policy which provides a rather versatile class of operating rules for increasing and decreasing service rate at the arrival and service completion times. The objective of this paper is to investigate algorithmically the busy period and the waiting time distributions. Our analysis supplements the classical work of Yadin and Naor (1967) who focused on the steady-state probabilities of the system state.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipUniversity of Athens
dc.description.sponsorshipGreek Ministry of Education program PYTHAGORAS/2004
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15630
dc.identifier.doi10.1007/s11009-005-4522-z
dc.identifier.issn1387-5841
dc.identifier.officialurlhttp://www.springerlink.com/content/783v32630657w174/fulltext.pdf?MUD=MP
dc.identifier.relatedurlhttp://www.springerlink.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50012
dc.issue.number3
dc.journal.titleMethodology and computing in applied probability
dc.language.isoeng
dc.page.final378
dc.page.initial353
dc.publisherSpringer
dc.relation.projectIDBFM2002-02189
dc.relation.projectIDELKE/70/4/6415
dc.rights.accessRightsrestricted access
dc.subject.cdu519.8
dc.subject.keywordQueueing
dc.subject.keywordHysteretic Policy
dc.subject.keywordBusy Period
dc.subject.keywordWaiting Time
dc.subject.keywordRemovable Servers
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleMarkovian Controllable Queueing Systems with Hysteretic Policies: Busy Period and Waiting Time Analysis
dc.typejournal article
dc.volume.number7
dcterms.referencesJ. Abate and W. Whitt, Numerical inversion of Laplace transforms of probability distributions, ORSA Journal on Computing vol. 7 pp. 36-43, 1995. J. R. Artalejo and M. J. Lopez-Herrero, Analysis of the busy period for the M/M/c queue: An algorithmic approach, Journal of Applied Probability vol. 38 pp. 209-222, 2001. J. R. Artalejo and M. J. Lopez-Herrero, On the M/M/m queue with removable servers.In S.K. Srinivasan and A. Vijayakumar (eds.), Stochastic Point Processes, pp. 124-144, Narosa Publishing House: New Delhi, 2003. F. Ball and V. T. Stefanov, Further approaches to computing fundamental characteristics of birth-death processes, Journal of Applied Probability vol. 38 pp. 995-1005, 2001. Ch. A. Charalambides, Enumerative Combinatorics, Chapman and Hall: Boca Raton, 2002. T. Crabill, D. Gross, and M. Magazine, A classified bibliography of research on optimal design and control of queues, Operational Research vol. 25 pp. 219-232, 1977. M. Yu Kitaev and R. F. Serfozo, M/M/1 queues with switching costs and hysteretic optimal control, Operational Research vol. 47 pp. 310-312, 1999. R. B. Lenin and P. R. Parthasarathy, Transient analysis in discrete time of Markovian queues with quadratic rates, Southwest Journal of Pure and Applied Mathematics vol. 3, pp. 1-15, 2000. F. V. Lu and R. F. Serfozo, M /M /1 queueing decision processes with monotone hysteretic optimal policies, Operational Research vol. 32 pp. 1116-1132, 1984. B. Natvig, On the waiting-time and busy period distributions for a general birth-and-death queueing model, Journal of Applied Probability vol. 12 pp. 524-532, 1975a. B. Natvig, A Contribution to the Theory of Birth-and-Death Queueing Models, Doctoral Thesis, University of Sheffield, 1975b. H. K. Rhee and B. D. Sivazlian, Distribution of the busy period in a controllable M/M/2 queue operating under the triadic (0, K, M, N ) policy, Journal of Applied Probability vol. 27 pp. 425-432, 1990. J. Romani, A queueing model with a variable number of channels, Trabajos de Estadística vol. 8 pp. 175-189, 1957 (in Spanish). L. I. Sennott, Stochastic Dynamic Programming and the Control of Queueing Systems, Wiley: New York, 1999. J. Teghem, Control of the service process in a queueing system, European Journal of Operational Research vol. 23 pp. 141-158, 1986. H. C. Tijms, A First Course in Stochastic Models, Wiley: Chichester, 2003. M. Yadin and P. Naor, On queueing systems with variable service capacities, Naval Research Logistics Quarterly vol. 14 pp. 43-53, 1967.
dspace.entity.typePublication
relation.isAuthorOfPublicationdb4b8a04-44b0-48e9-8b2c-c80ffae94799
relation.isAuthorOfPublication.latestForDiscoverydb4b8a04-44b0-48e9-8b2c-c80ffae94799

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
arta34.pdf
Size:
471.04 KB
Format:
Adobe Portable Document Format

Collections