The birth of a cusp in the two-dimensional, undercooled Stefan problem
dc.contributor.author | Herrero, Miguel A. | |
dc.contributor.author | Medina Reus, Elena | |
dc.contributor.author | Velázquez, J.J. L. | |
dc.date.accessioned | 2023-06-20T17:08:38Z | |
dc.date.available | 2023-06-20T17:08:38Z | |
dc.date.issued | 2000-09 | |
dc.description.abstract | This paper deals with the one-phase, undercooled Stefan problem, in space dimension N = 2. We show herein that planar, one-dimensional blow-up behaviours corresponding to the undercooling parameter Delta = 1 are unstable with respect to small, transversal perturbations, The solutions thus produced are shown to generically generate crisps in finite time, when they exhibit an undercooling Delta = 1 - O(c) < 1, where 0 < c << 1, and epsilon is a parameter that measures the strength of the perturbation. The asymptotic behaviour of solutions and interfaces near their cusps is also obtained. All results are derived by means of matched asymptotic expansions techniques. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17887 | |
dc.identifier.issn | 0033-569X | |
dc.identifier.officialurl | http://www.ams.org/publications/journals/journalsframework/qam | |
dc.identifier.relatedurl | http://www.ams.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57837 | |
dc.issue.number | 3 | |
dc.journal.title | Quarterly of Applied Mathematics | |
dc.language.iso | eng | |
dc.page.final | 494 | |
dc.page.initial | 473 | |
dc.publisher | Brown University | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.956.4 | |
dc.subject.cdu | 536.2 | |
dc.subject.keyword | Stefan problem | |
dc.subject.keyword | undercooling | |
dc.subject.keyword | interfaces | |
dc.subject.keyword | asymptotic behaviour | |
dc.subject.keyword | matched asymptotic expansions | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | The birth of a cusp in the two-dimensional, undercooled Stefan problem | |
dc.type | journal article | |
dc.volume.number | 58 | |
dcterms.references | D. Andreucci, M. A. Herrero, and J. J. L. Velázquez, The classical one-phase Stefan problem: A catalogue of interface behaviours, to appear L. A. Caffarelli, The regularity of free boundaries in higher dimensions, Acta Math. 139, 155–184 (1977) B. Caroli, C. Caroli, and B. Roulet, Instabilities of planar solidification fronts, In Solids Far from Equilibrium, C. Godréche, editor, Cambridge University Press, 1992, pp. 155–296 A. Fasano, M. Primicerio, S. W. Howinson, and J. R. Ockendon, On the singularities of one-dimensional Stefan problems with undercooling, In Mathematical Models for Phase Change Problems (J. F. Rodrigues, ed.), International Series on Numerical Mathematics, vol. 88, Birkhäuser, 1989, pp. 215–226. M. A. Herrero and J. J. L. Velázquez, Singularity formation in the one-dimensional supercooled Stefan problem, European Journal of Applied Math. 7, 119–150 (1996) A. A. Lacey, Bounds on the solutions of one-phase Stefan problems, European Journal of Applied Math. 6, 509–516 (1995) A. A. Lacey and J. R. Ockendon, Ill-posed free boundary problems, Control and Cybernetics 14, 275–296 (1985) W. W. Mullins and R. F. Sekerka, Stability of a planar interface during solidification of a dilute binary alloy, Journal of Applied Physics 35, 444–451 (1964) P. Pelcé (editor), Dynamics of Curved Fronts, Academic Press, 1988 B. Sherman, A general one-phase Stefan problem, Quart. Appl. Math. 28, 377–383 (1970) J. J. L. Velázquez, Cusp formation for the undercooled Stefan problem in two and three dimensions, European Journal of Applied Math. 8, 1–21 (1997) | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1