Integrative phenotypic and genomic analysis of extended-spectrum Beta-lactamase (ESBL) and carbapenemase genes in Enterobacteriaceae and Pseudomonaceae strains isolated from animals in a Spanish Veterinary Teaching Hospital

Loading...
Thumbnail Image

Full text at PDC

Publication date

2025

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Leal-Vélez, L., Quevedo-Caraballo, S., Scarpellini, R., García, M. E., & Blanco, J. L. (2025). Integrative phenotypic and genomic analysis of extended-spectrum Beta-lactamase (ESBL) and carbapenemase genes in Enterobacteriaceae and Pseudomonaceae strains isolated from animals in a Spanish Veterinary Teaching Hospital. Research in veterinary science, 185, 105529. https://doi.org/10.1016/j.rvsc.2025.105529

Abstract

Antimicrobial resistance (AMR) is a major global health threat, exacerbated by globalization which facilitates the spread of resistant bacteria. Addressing this issue requires a One Health perspective, involving humans, animals, and the environment. This study aims to compare the phenotypic resistance profiles of 69 clinical bacterial isolates (Enterobacteriaceae and Pseudomonaceae) from a Veterinary Teaching Hospital in Spain with their genotypic resistance profiles based on the presence of Extended-Spectrum Beta-Lactamases (ESBLs), AmpC and carbapenemases -enconding genes. For the genotypical analysis, whole genome sequencing (WGS) was used. Phenotypic characterization revealed that 37 isolates (53.6 %) grew on ESBL-selective medium. Phenotypic confirmatory tests showed that 12 strains (17.4 %) had some type of ESBL and 21 (30.4 %) could have an AmpC. Also, 24 isolates (34.8 %) grew in selective media for carbapenemases-producing bacteria, and 2 of these had a class A carbapenemase based on the KPC&MBL&OXA-48 disc kit. The genotypic analysis revealed 20 isolates (29 %) had blaTEM, 8 (11.6 %) had blaCTX-M and 7 (10.1 %) blaSHV. 27 (39.1 %) isolates had class C beta-lactamase genes. 35 isolates (50.7 %) had blaOXA, class D beta-lactamase. 37 strains (53.6 %) had an Inc. plasmid replicon associated with the spread of AMR genes, including beta-lactamases and carbapenemases. This study emphasizes the value of combining phenotypic and genomic analyses to better understand and address antibiotic resistance, especially in veterinary contexts. Integrating these approaches enhances diagnostic accuracy by identifying strains with resistance genes that may not show phenotypically, helping clinicians in anticipating resistance under selective pressure.

Research Projects

Organizational Units

Journal Issue

Description

CRediT authorship contribution statement Laura Leal-Velez: ´ Writing – review & editing, Writing – original draft, Project administration, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Sergio Quevedo-Caraballo: Writing – review & editing, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Raffaele Scarpellini: Writing – review & editing, Resources, Methodology, Conceptualization. Marta E. García: Writing – review & editing, Supervision, Resources, Funding acquisition. Jose ´ L. Blanco: Writing – review & editing, Visualization, Validation, Supervision, Resources, Project administration, Funding acquisition, Conceptualization.

Unesco subjects

Keywords

Collections