Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Prediction of methylated CpGs in DNA sequences using a support vector machine

dc.contributor.authorReche Gallardo, Pedro Antonio
dc.contributor.authorBhasin, Manoj
dc.contributor.authorZhang, Hong
dc.contributor.authorReinherz, Ellis L
dc.date.accessioned2023-06-20T09:48:12Z
dc.date.available2023-06-20T09:48:12Z
dc.date.issued2005
dc.description.abstractDNA methylation plays a key role in the regulation of gene expression. The most common type of DNA modification consists of the methylation of cytosine in the CpG dinucleotide. At the present time, there is no method available for the prediction of DNA methylation sites. Therefore, in this study we have developed a support vector machine (SVM)-based method for the prediction of cytosine methylation in CpG dinucleotides. Initially a SVM module was developed from human data for the prediction of human-specific methylation sites. This module achieved a MCC and AUC of 0.501 and 0.814, respectively, when evaluated using a 5-fold cross-validation. The performance of this SVM-based module was better than the classifiers built using alternative machine learning and statistical algorithms including artificial neural networks, Bayesian statistics, and decision trees. Additional SVM modules were also developed based on mammalian- and vertebrate-specific methylation patterns. The SVM module based on human methylation patterns was used for genome-wide analysis of methylation sites. This analysis demonstrated that the percentage of methylated CpGs is higher in UTRs as compared to exonic and intronic regions of human genes. This method is available on line for public use under the name of Methylator at http://bio.dfci.harvard.edu/Methylator/.
dc.description.departmentDepto. de Inmunología, Oftalmología y ORL
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/9330
dc.identifier.issn0014-5793
dc.identifier.officialurlhttp://www.elsevier.com/wps/find/journaldescription.cws_home/506085/description#description
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50383
dc.issue.number20
dc.journal.titleFEBS Letters
dc.language.isoeng
dc.page.final8
dc.page.initial4302
dc.publisherElsevier
dc.rights.accessRightsopen access
dc.subject.keywordDNA
dc.subject.keywordCpG
dc.subject.keywordMethylation
dc.subject.keywordSupport vector machine
dc.subject.keywordPrediction
dc.subject.ucmBiología molecular (Biología)
dc.subject.ucmBioinformática
dc.subject.unesco2415 Biología Molecular
dc.titlePrediction of methylated CpGs in DNA sequences using a support vector machine
dc.typejournal article
dc.volume.number579
dspace.entity.typePublication
relation.isAuthorOfPublication372eb700-f6f8-4156-80f5-b8f7c9edafe1
relation.isAuthorOfPublication.latestForDiscovery372eb700-f6f8-4156-80f5-b8f7c9edafe1

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
28.Bhasin_etal_FEBS_2005.pdf
Size:
292.21 KB
Format:
Adobe Portable Document Format

Collections