Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Hexavalent Chromium Removal from Industrial Wastewater by Adsorption and Reduction onto Cationic Cellulose Nanocrystals

dc.contributor.authorOjembarrena Jiménez, Francisco De Borja
dc.contributor.authorSammaraie, Hassan
dc.contributor.authorCampano Tiedra, Cristina
dc.contributor.authorBlanco Suárez, María Ángeles
dc.contributor.authorMerayo Cuevas, Noemí
dc.contributor.authorNegro Álvarez, Carlos Manuel
dc.date.accessioned2023-06-22T11:11:23Z
dc.date.available2023-06-22T11:11:23Z
dc.date.issued2022
dc.description.abstractCationic cellulose nanocrystals (CCNC) are lignocellulosic bio-nanomaterials that present large, specific areas rich with active surface cationic groups. This study shows the adsorption removal of hexavalent chromium (Cr(VI)) from industrial wastewaters by the CCNC. The CCNC were synthetized through periodate oxidation and Girard’s reagent-T cationization. The high value of CCNCs cationic groups and anionic demand reveal probable nanocrystal-Cr(VI) attraction. Adsorption was performed with synthetic Cr(VI) water at different pH, dosage, Cr(VI) concentration and temperature. Fast removal of Cr(VI) was found while operating at pH 3 and 100 mg·L −1 of dosage. Nevertheless, a first slower complete removal of chromium was achieved by a lower CCNC dosage (40 mg·L −1 ). Cr(VI) was fully converted by CCNC into less-toxic trivalent species, kept mainly attached to the material surface. The maximum adsorption capacity was 44 mg·g −1 . Two mechanisms were found for low chromium concentrations (Pseudo-first and pseudo-second kinetic models and continuous growth multi-step intraparticle) and for high concentrations (Elovich model and sequential fast growth-plateau-slow growth intraparticle steps). The Sips model was the best-fitting isotherm. Isotherm thermodynamic analysis indicated a dominant physical sorption. The Arrhenius equation revealed an activation energy between physical and chemical adsorption. CCNC application at selected conditions in industrial wastewater achieved a legal discharge limit of 40 min.
dc.description.departmentDepto. de Ingeniería Química y de Materiales
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid y Ministerio de Economía y Competitividad
dc.description.sponsorshipMinisterio de Economía y Competitividad
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/78119
dc.identifier.doi10.3390/ nano12234172
dc.identifier.issn2079-4991
dc.identifier.officialurlhttps://doi.org/10.3390/ nano12234172
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72191
dc.journal.titleNanomaterials
dc.language.isoeng
dc.publisherMDPI
dc.relation.projectIDprojects S2018/EMT-4459 (RETO-PROSOSTCM) and CTQ2017-85654-C2-2-R
dc.relation.projectID(PRE2018-085034)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu66.0
dc.subject.keywordcationic cellulose nanocrystals
dc.subject.keywordhexavalent chromium
dc.subject.keywordadsorption
dc.subject.keywordwastewater treatment
dc.subject.keywordcationization process
dc.subject.ucmIngeniería química
dc.subject.unesco3303 Ingeniería y Tecnología Químicas
dc.titleHexavalent Chromium Removal from Industrial Wastewater by Adsorption and Reduction onto Cationic Cellulose Nanocrystals
dc.typejournal article
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublicationc0766d30-afae-4bad-bdb1-8780899a0182
relation.isAuthorOfPublicationbdaaafb4-cb70-4eec-813b-11e6774d431b
relation.isAuthorOfPublication04f905d2-6294-4530-9d01-062828ddefb2
relation.isAuthorOfPublication70170cd9-21de-4871-a7fe-b2ad29053b15
relation.isAuthorOfPublication.latestForDiscoverybdaaafb4-cb70-4eec-813b-11e6774d431b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nanomaterials-12-04172-v2.pdf
Size:
3.64 MB
Format:
Adobe Portable Document Format

Collections