Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Multilinear operators on spaces of continuous functions

Loading...
Thumbnail Image

Full text at PDC

Publication date

1998

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Faculty of Mathematics and Computer Science of Adam Mickiewicz University
Citations
Google Scholar

Citation

Abstract

Let E1, . . . ,Ed be Banach spaces such that all linear operators from Ei into E_j (i 6= j) are weakly compact. The authors show that every continuous d-linear operator T on E1 × • • • × Ed to a Banach space F possesses a unique bounded multilinear extension T__ : E__ 1 × • • • × E__ d ! F__ that is !_ − !_-separately continuous and kT__k = kTk. In particular, existence of unique continuous multilinear extensions from C(K1)ו • •× C(Kd) (Ki – Hausdorff compact spaces) to C(K1)__ו • •×C(Kd)__ that are separately weak_-continuous is established. As a corollary, integral representations with respect to polymeasures for multilinear mappings on C(K1)ו • •×C(Kd) into a Banach space are found. The results generalize a theorem due to Pelczynsky about multilinear extensions from C(K1) × • • • × C(Kd) to the Cartesian product of the spaces of bounded Baire functions on Ki.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections