Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Lagrangian submanifolds and Lefschetz pencils.

dc.contributor.authorAuroux, Denis
dc.contributor.authorMuñoz, Vicente
dc.contributor.authorPresas, Francisco
dc.date.accessioned2023-06-20T10:34:35Z
dc.date.available2023-06-20T10:34:35Z
dc.date.issued2005
dc.description.abstractGiven a Lagrangian submanifold in a symplectic manifold and a Morse function on the submanifold, we show that there is an isotopic Morse function and a symplectic Lefschetz pencil on the manifold extending the Morse function to the whole manifold. From this construction,we define a sequence of symplectic invariants classifying the isotopy classes of Lagrangian spheres in a symplectic 4-manifold.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipNSF
dc.description.sponsorshipCICYT
dc.description.sponsorshipCICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21115
dc.identifier.issn1527-5256
dc.identifier.officialurlhttp://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.jsg/1144947795
dc.identifier.relatedurlhttp://projecteuclid.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50612
dc.issue.number2
dc.journal.titleJournal of Symplectic Geometry
dc.language.isoeng
dc.page.final219
dc.page.initial171
dc.publisherInternational Press
dc.relation.projectIDDMS-0244844.
dc.relation.projectIDBFM2000–0024
dc.relation.projectIDBFM2000–0024
dc.relation.projectIDHPRN-CT-2000-00101.
dc.rights.accessRightsrestricted access
dc.subject.cdu514
dc.subject.keywordSymplectic
dc.subject.keywordLefschetz pencil
dc.subject.keywordLagrangian submanifold
dc.subject.ucmGeometría
dc.subject.unesco1204 Geometría
dc.titleLagrangian submanifolds and Lefschetz pencils.
dc.typejournal article
dc.volume.number3
dcterms.referencesJ. Amoros, V. Muñoz and F. Presas, Generic behavior of asymptotically holomorphic pencils, J. Symplectic Geom. 2 (2004) 377–392 . D. Auroux, Asymptotically holomorphic families of symplectic submanifolds, Geom.Funct. Anal. 7 (1997), 971–995. D. Auroux, Symplectic 4-manifolds as branched coverings of CP2, Invent. Math. 139 (2000), 551–602. D. Auroux, Symplectic maps to projective spaces and symplectic invariants, Turkish J. Math. 25 (2001), 1–42. D. Auroux, Estimated transversality in symplectic geometry and projective maps,Symplectic Geometry and Mirror Symmetry (Seoul, 2000), 1–30, World Scientific,Singapore, 2001. D. Auroux, D. Gayet and J. P. Mohsen, Symplectic hypersurfaces in the complement of an isotropic submanifold, Math. Ann. 321 (2001), 739–754. D. Auroux and L. Katzarkov, A degree doubling formula for braid monodromies and Lefschetz pencils, preprint. J. Cerf, Sur les diffeomorphismes de la sphere de dimension trois (Γ4 = 0), Lecture Notes in Math. 53, Springer, 1968. S. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996), 666–705. S. Donaldson, Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999), 205–236. R. Gompf, Toward a topological characterization of symplectic manifolds, J. Symplectic Geom. 2 (2004), 177–206. J. Milnor, Morse theory, Annals of Mathematics Studies, 51, Princeton University Press, Princeton, N.J., 1963. P. Seidel, Vanishing cycles and mutation, in Proceedings of 3rd European Congress of Mathematics (Barcelona, 2000),Vol. II, 65–85, Progr. Math. 202, Birkhauser, Basel,2001. P. Seidel, Lectures on four-dimensional Dehn twists,preprint math.SG/0309012. S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387–399. I. Smith, Lefschetz pencils and divisors in moduli space, Geom. Topol. 5 (2001),579–608. M. Teicher, Braid groups, algebraic surfaces and fundamental groups of complements of branch curves, in ‘Algebraic Geometry’ (Santa Cruz, 1995), 127–150, Proc. Sympos.Pure Math., 62 (part 1), Amer. Math. Soc.,Providence, 1997.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
VMuñoz44.pdf
Size:
607.92 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
VMuñoz44libre.pdf
Size:
498.67 KB
Format:
Adobe Portable Document Format

Collections