The minimal canonical form of a tensor network

Thumbnail Image
Official URL
Full text at PDC
Publication Date
Acuaviva Huertos, Arturo
Makam, Visu
Nieuwboer, Harold
Sittner, Friedrich
Walter, Michael
Witteveen, Freek
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
Tensor networks have a gauge degree of freedom on the virtual degrees of freedom that are contracted. A canonical form is a choice of fixing this degree of freedom. For matrix product states, choosing a canonical form is a powerful tool, both for theoretical and numerical purposes. On the other hand, for tensor networks in dimension two or greater there is only limited understanding of the gauge symmetry. Here we introduce a new canonical form, the minimal canonical form, which applies to projected entangled pair states (PEPS) in any dimension, and prove a corresponding fundamental theorem. Already for matrix product states this gives a new canonical form, while in higher dimensions it is the first rigorous definition of a canonical form valid for any choice of tensor. We show that two tensors have the same minimal canonical forms if and only if they are gauge equivalent up to taking limits; moreover, this is the case if and only if they give the same quantum state for any geometry. In particular, this implies that the latter problem is decidable - in contrast to the well-known undecidability for PEPS on grids. We also provide rigorous algorithms for computing minimal canonical forms. To achieve this we draw on geometric invariant theory and recent progress in theoretical computer science in non-commutative group optimization.
[A+19] Frank Arute et al. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505–510, 2019. [AGL+18] Zeyuan Allen-Zhu, Ankit Garg, Yuanzhi Li, Rafael Oliveira, and Avi Wigderson. Operator scaling via geodesically convex optimization, invariant theory and polynomial identity testing. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 172–181, New York, NY, USA, 2018. Association for Computing Machinery. [BCS13] Peter Bürgisser, Michael Clausen, and Mohammad A Shokrollahi. Algebraic complexity theory, volume 315. Springer Science & Business Media, 2013. [BFG+18] Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson. Efficient algorithms for tensor scaling, quantum marginals, and moment polytopes. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 883–897. IEEE, 2018. [BFG+19] Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson. Towards a Theory of Non-Commutative Optimization: Geodesic 1st and 2nd Order Methods for Moment Maps and Polytopes. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 845–861, 2019. [BGO+18] Peter Bürgisser, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson. Alternating minimization, scaling algorithms, and the null-cone problem from invariant theory. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. [BH13] Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature, volume 319. Springer Science & Business Media, 2013. [Bha09] Rajendra Bhatia. Positive Definite Matrices. Princeton University Press, Princeton, 2009. [BRVR18] Jim Bryan, Zinovy Reichstein, and Mark Van Raamsdonk. Existence of locally maximally entangled quantum states via geometric invariant theory. Annales Henri Poincaré, 19(8):2491–2511, 2018. [CGFW21] Matthias Christandl, Fulvio Gesmundo, Daniel Stilck França, and Albert H. Werner. Optimization at the boundary of the tensor network variety. Physical Review B, 103 19):195139, 2021. [CGW11] Xie Chen, Z.-C. Gu, and X.-G. Wen. Classification of Gapped Symmetric Phases in 1D Spin Systems. PRB, 83:035107, 2011. [CLVW20] Matthias Christandl, Angelo Lucia, Péter Vrana, and Albert H. Werner. Tensor network representations from the geometry of entangled states. SciPost Physics, 9(3):042, 2020. [CM06] Matthias Christandl and Graeme Mitchison. The spectra of quantum states and the kronecker coefficients of the symmetric group. Communications in Mathematical physics, 261(3):789–797, 2006. [CPSV11] J. Ignacio Cirac, Didier Poilblanc, Norbert Schuch, and Frank Verstraete. Entanglement spectrum and boundary theories with projected entangled-pair states. Physical Review B, 83(24):245134, 2011. [CPSV17] J. I. Cirac, D. Pérez-García, N. Schuch, and F. Verstraete. Matrix product density operators: Renormalization fixed points and boundary theories. Annals of Physics, 378:100–149, 2017. [CPSV21] J. Ignacio Cirac, David Pérez-García, Norbert Schuch, and Frank Verstraete. Matrix product states and projected entangled pair states: Concepts, symmetries, theorems. Reviews of Modern Physics, 93(4):045003, 2021. [CPZ+17] Andrzej Cichocki, Anh-Huy Phan, Qibin Zhao, Namgil Lee, Ivan Oseledets, Masashi Sugiyama, Danilo P. Mandic, et al. Tensor networks for dimensionality reduction and large-scale optimization: Part 2 applications and future perspectives. Foundations and Trends in Machine Learning, 9(6):431–673, 2017. [DCP17] Corrado De Concini and Claudio Procesi. The Invariant Theory of Matrices, volume 69 of University Lecture Series. AMS, 2017. [DCS18] Henrik Dreyer, J. Ignacio Cirac, and Norbert Schuch. Projected entangled pair states with continuous virtual symmetries. Physical Review B, 98(11):115120, 2018. [DCSP17] Gemma De las Cuevas, J. Ignacio Cirac, Norbert Schuch, and David Perez-Garcia. Irreducible forms of matrix product states: Theory and applications. Journal of Mathematical Physics, 58(12):121901, 2017. [Der01] Harm Derksen. Polynomial bounds for rings of invariants. Proceedings of the American Mathematical Society, 129(4):955–963, 2001. [DH05] Sumit Daftuar and Patrick Hayden. Quantum state transformations and the schubert calculus. Annals of Physics, 315(1):80–122, 2005. [DK15] Harm Derksen and Gregor Kemper. Computational invariant theory. Springer, 2015. [DM20a] Harm Derksen and Visu Makam. Algorithms for orbit closure separation for invariants and semi-invariants of matrices. Algebra & Number Theory, 14(10):2791–2813, 2020. [DM20b] Harm Derksen and Visu Makam. An exponential lower bound for the degrees of invariants of cubic forms and tensor actions. Advances in Mathematics, 368:107136, 2020. [DM21] Harm Derksen and Visu Makam. Polystability in positive characteristic and degree lower bounds for invariant rings. arXiv preprint arXiv:2107.06838, 2021. [Eve18] Glen Evenbly. Gauge fixing, canonical forms and optimal truncations in tensor networks with closed loops. Physical Review B, 98(8):085155, 2018. [FNW92] M. Fannes, B. Nachtergaele, and R. F. Werner. Finitely correlated states on quantum spin chains. Commun. Math. Phys., 144:443, 1992. [For86] Edward Formanek. Generating the ring of matrix invariants. In Freddy M. J. van Oystaeyen, editor, Ring Theory, Lecture Notes in Mathematics, pages 73–82, Berlin, Heidelberg, 1986. Springer. [GGOW17] Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. Algorithmic and optimization aspects of Brascamp-Lieb inequalities, via operator scaling. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 397–409, 2017. [GGOW20] Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. Operator scaling: theory and applications. Foundations of Computational Mathematics, 20(2):223–290, 2020. [GIM+19] Ankit Garg, Christian Ikenmeyer, Visu Makam, Rafael Oliveira, Michael Walter, and Avi Wigderson. Search problems in algebraic complexity, GCT, and hardness of generator for invariant rings. arXiv preprint arXiv:1910.01251, 2019. [GK+72] Yu Gurevich, I.O. Koryakov, et al. Remarks on Berger’s paper on the domino problem. Siberian Mathematical Journal, 13(2):319–321, 1972. [GW10] Gilad Gour and Nolan R. Wallach. All maximally entangled four-qubit states. Journal of Mathematical Physics, 51(11):112201, 2010. [HNQ+16] Patrick Hayden, Sepehr Nezami, Xiao-Liang Qi, Nathaniel Thomas, Michael Walter, and Zhao Yang. Holographic duality from random tensor networks. Journal of High Energy Physics, 2016(11):1–56, 2016. [HV17] Jutho Haegeman and Frank Verstraete. Diagonalizing transfer matrices and matrix product operators: A medley of exact and computational methods. Annual Review of Condensed Matter Physics, 8:355–406, 2017. [J+21] J. Larrea Jiménez et al. A quantum magnetic analogue to the critical point of water. Nature, 592(7854):370–375, 2021. [JR21] Emmanuel Jeandel and Michael Rao. An aperiodic set of 11 Wang tiles. Advances in Combinatorics, 1, 2021. [JWX08] Hong-Chen Jiang, Zheng-Yu Weng, and Tao Xiang. Accurate determination of tensor network state of quantum lattice models in two dimensions. Physical Review Letters, 101(9):090603, 2008. [Kir84] Frances Clare Kirwan. Cohomology of quotients in symplectic and algebraic geometry, volume 31. Princeton University Press, 1984. [KKOS12] Henning Kalis, Daniel Klagges, Román Orús, and Kai Phillip Schmidt. Fate of the cluster state on the square lattice in a magnetic field. Physical Review A, 86(2):022317, 2012. [KLLR18] Tsz Chiu Kwok, Lap Chi Lau, Yin Tat Lee, and Akshay Ramachandran. The Paulsen problem, continuous operator scaling, and smoothed analysis. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 182–189, 2018. [KLPG19] Michael J. Kastoryano, Angelo Lucia, and David Perez-Garcia. Locality at the boundary implies gap in the bulk for 2D PEPS. Communications in Mathematical Physics, 366(3):895–926, 2019. [Kly02] Alexander Klyachko. Coherent states, entanglement, and geometric invariant theory. arXiv preprint quant-ph/0206012, 2002. [Kly04] Alexander Klyachko. Quantum marginal problem and representations of the symmetric group. arXiv preprint quant-ph/0409113, 2004. [Kly06] Alexander A. Klyachko. Quantum marginal problem and N-representability. In Journal of Physics: Conference Series, volume 36, page 014. IOP Publishing, 2006. [KN79] George Kempf and Linda Ness. The length of vectors in representation spaces. In Algebraic geometry, pages 233–243. Springer, 1979. [KP96] Hanspeter Kraft and Claudio Procesi. Classical invariant theory, a primer. Lecture Notes. Preliminary version, 1996. [LCB14a] Michael Lubasch, J. Ignacio Cirac, and Mari-Carmen Banuls. Algorithms for finite projected entangled pair states. Physical Review B, 90(6):064425, 2014. [LCB14b] Michael Lubasch, J. Ignacio Cirac, and Mari-Carmen Banuls. Unifying projected entangled pair state contractions. New Journal of Physics, 16(3):033014, 2014. [MFK94] David Mumford, John Fogarty, and Frances Kirwan. Geometric invariant theory, volume 34. Springer Science & Business Media, 1994. [MGP+18] Andras Molnar, José Garre-Rubio, David Pérez-García, Norbert Schuch, and J. Ignacio Cirac. Normal projected entangled pair states generating the same state. New Journal of Physics, 20(11):113017, 2018. [MGSC18] Andras Molnar, Yimin Ge, Norbert Schuch, and J. Ignacio Cirac. A generalization of the injectivity condition for projected entangled pair states. Journal of Mathematical Physics, 59(2):021902, 2018. [NLPD+22] John C. Napp, Rolando L. La Placa, Alexander M. Dalzell, Fernando G. S. L. Brandão, and Aram W. Harrow. Efficient classical simulation of random shallow 2d quantum circuits. Physical Review X, 12(2):021021, 2022. [Oga20] Yoshiko Ogata. A Z2-index of symmetry protected topological phases with time reversal symmetry for quantum spin chains. Communications in Mathematical Physics, 374(2):705–734, 2020. [OV08] Roman Orus and Guifre Vidal. Infinite time-evolving block decimation algorithm beyond unitary evolution. Physical Review B, 78(15):155117, 2008. [PBT+15] Ho N. Phien, Johann A. Bengua, Hoang D. Tuan, Philippe Corboz, and Román Orús. Infinite projected entangled pair states algorithm improved: Fast full update and gauge fixing. Physical Review B, 92(3):035142, 2015. [PBTO12] Frank Pollmann, Erez Berg, Ari M. Turner, and Masaki Oshikawa. Symmetry protection of topological phases in one-dimensional quantum spin systems. Physical review b, 85(7):075125, 2012. [PGPH20] David Pérez-García and Antonio Pérez-Hernández. Locality estimates for complex time evolution in 1D. arXiv preprint arXiv:2004.10516, 2020. [PGSGG+10] D. Pérez-García, M. Sanz, C. E. Gonzalez-Guillen, M. M. Wolf, and J. I. Cirac. Characterizing symmetries in a projected entangled pair state. New Journal of Physics, 12(2):025010, 2010. [PHOW20] Tianyi Peng, Aram W. Harrow, Maris Ozols, and Xiaodi Wu. Simulating large quantum circuits on a small quantum computer. Physical Review Letters, 125(15):150504, 2020. [PKHSM+22] Alejandro Pozas-Kerstjens, Senaida Hernández-Santana, José Ramón Pareja Monturiol, Marco Castrillón López, Giannicola Scarpa, Carlos E. González-Guillén, and David Pérez-García. Physics solutions for machine learning privacy leaks. arXiv preprint arXiv:2202.12319, 2022. [PMV15] Ho N. Phien, Ian P. McCulloch, and Guifré Vidal. Fast convergence of imaginary time evolution tensor network algorithms by recycling the environment. Physical Review B, 91(11):115137, 2015. [Pro76] Claudio Procesi. The invariant theory of n × n matrices. Advances in Mathematics, 19(3):306–381, 1976. [PYHP15] Fernando Pastawski, Beni Yoshida, Daniel Harlow, and John Preskill. Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence. Journal of High Energy Physics, 2015(6):1–55, 2015. [PZ22] Feng Pan and Pan Zhang. Simulation of quantum circuits using the big-batch tensor network method. Physical Review Letters, 128(3):030501, 2022. [Raz74] Ju P. Razmyslov. Trace identities of full matrix algebras over a field of characteristic zero. Mathematics of the USSR-Izvestiya, 8(4):727–760, 1974. [RBC21] Daniel Robaina, Mari Carmen Bañuls, and J. Ignacio Cirac. Simulating 2+1 D Z3 lattice gauge theory with an infinite projected entangled-pair state. Physical Review Letters, 126(5):050401, 2021. [RTP+20] Shi-Ju Ran, Emanuele Tirrito, Cheng Peng, Xi Chen, Luca Tagliacozzo, Gang Su, and Maciej Lewenstein. Tensor network contractions: methods and applications to quantum many-body systems. Springer Nature, 2020. [Sch11] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states. Annals of physics, 326(1):96–192, 2011. [Sch20] Norbert Schuch. Decidability of periodic tilings of the plane, 2020. [SDC+22] Zhenzhong Shi, Sachith Dissanayake, Philippe Corboz, William Steinhardt, David Graf, D. M. Silevitch, Hanna A. Dabkowska, T. F. Rosenbaum, Frédéric Mila, and Sara Haravifard. Discovery of quantum phases in the Shastry-Sutherland compound SrCu2(BO3)2 under extreme conditions of field and pressure. Nature Communications, 13(1):1–9, 2022. [Shi19] Yaroslav Shitov. An improved bound for the lengths of matrix algebras. Algebra Number Theory, 13(6):1501–1507, 2019. [SMG+20] Giannicola Scarpa, András Molnár, Yimin Ge, Juan José García-Ripoll, Norbert Schuch, David Pérez-García, and Sofyan Iblisdir. Projected entangled pair states: Fundamental analytical and numerical limitations. Physical Review Letters, 125(21):210504, 2020. [SPC11] N. Schuch, D. Perez-Garcia, and I. Cirac. Classifying quantum phases using matrix product states and PEPS. Phys. Rev. B, 84:165139, 2011. [SPCPG13] Norbert Schuch, Didier Poilblanc, J. Ignacio Cirac, and David Perez-Garcia. Topological order in the projected entangled-pair states formalism: Transfer operator and boundary Hamiltonians. Physical review letters, 111(9):090501, 2013. [SPGWC10] Mikel Sanz, David Perez-Garcia, Michael M. Wolf, and Juan I. Cirac. A quantum version of Wielandt’s inequality. IEEE Transactions on Information Theory, 56(9):4668–4673, 2010. [SS16] Edwin Stoudenmire and David J. Schwab. Supervised learning with tensor networks. Advances in Neural Information Processing Systems, 29, 2016. [VC04] F. Verstraete and J. I. Cirac. Renormalization algorithms for quantum-many body systems in two and higher dimensions. arXiv preprint arXiv:cond-mat/0407066, 2004. [VDDM03] Frank Verstraete, Jeroen Dehaene, and Bart De Moor. Normal forms and entanglement measures for multipartite quantum states. Physical Review A, 68(1):012103, 2003. [VHCV16] Laurens Vanderstraeten, Jutho Haegeman, Philippe Corboz, and Frank Verstraete. Gradient methods for variational optimization of projected entangled-pair states. Physical Review B, 94(15):155123, 2016. [Vid03] Guifré Vidal. Efficient classical simulation of slightly entangled quantum computations. Physical review letters, 91(14):147902, 2003. [VPC04] F. Verstraete, D. Porras, and J. I. Cirac. DMRG and periodic boundary conditions: a quantum information perspective. Phys. Rev. Lett., 93:227205, 2004. [Wal14] Michael Walter. Multipartite Quantum States and their Marginals. PhD thesis, ETH Zurich, 2014. [Wal17] Nolan R. Wallach. Geometric invariant theory. Springer, 2017. [WDGC13] Michael Walter, Brent Doran, David Gross, and Matthias Christandl. Entanglement polytopes: multiparticle entanglement from single-particle information. Science, 340(6137):1205–1208, 2013. [Wey46] Hermann Weyl. The classical groups: their invariants and representations. Number 1. Princeton University Press, 1946. [Whi92] S. R. White. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 69:2863, 1992. [ZCC+17] Bo-Xiao Zheng, Chia-Min Chung, Philippe Corboz, Georg Ehlers, Ming-Pu Qin, Reinhard M. Noack, Hao Shi, Steven R. White, Shiwei Zhang, and Garnet Kin-Lic Chan. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science, 358(6367):1155–1160, 2017.