Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Multivariate Multiscale Dispersion Entropy of Biomedical Times Series

dc.contributor.authorAzami, Hamed
dc.contributor.authorFernández Lucas, Alberto Amable
dc.contributor.authorEscudero, Javier
dc.date.accessioned2023-06-17T12:31:33Z
dc.date.available2023-06-17T12:31:33Z
dc.date.issued2019
dc.description.abstractDue to the non-linearity of numerous physiological recordings, non-linear analysis of multi-channel signals has been extensively used in biomedical engineering and neuroscience. Multivariate multiscale sample entropy (MSE–mvMSE) is a popular non-linear metric to quantify the irregularity of multi-channel time series. However, mvMSE has two main drawbacks: (1) the entropy values obtained by the original algorithm of mvMSE are either undefined or unreliable for short signals (300 sample points); and (2) the computation of mvMSE for signals with a large number of channels requires the storage of a huge number of elements. To deal with these problems and improve the stability of mvMSE, we introduce multivariate multiscale dispersion entropy (MDE–mvMDE), as an extension of our recently developed MDE, to quantify the complexity of multivariate time series. We assess mvMDE, in comparison with the state-of-the-art and most widespread multivariate approaches, namely, mvMSE and multivariate multiscale fuzzy entropy (mvMFE), on multi-channel noise signals, bivariate autoregressive processes, and three biomedical datasets. The results show that mvMDE takes into account dependencies in patterns across both the time and spatial domains. The mvMDE, mvMSE, and mvMFE methods are consistent in that they lead to similar conclusions about the underlying physiological conditions. However, the proposed mvMDE discriminates various physiological states of the biomedical recordings better than mvMSE and mvMFE. In addition, for both the short and long time series, the mvMDE-based results are noticeably more stable than the mvMSE- and mvMFE-based ones. For short multivariate time series, mvMDE, unlike mvMSE, does not result in undefined values. Furthermore, mvMDE is faster than mvMFE and mvMSE and also needs to store a considerably smaller number of elements. Due to its ability to detect different kinds of dynamics of multivariate signals, mvMDE has great potential to analyse various signals.en
dc.description.departmentDepto. de Medicina Legal, Psiquiatría y Patología
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/62062
dc.identifier.citationAzami, H. Fernández Lucas, A. A. & Escudero, J. «Multivariate Multiscale Dispersion Entropy of Biomedical Times Series». Entropy, vol. 21, n.o 9, septiembre de 2019, p. 913. DOI.org (Crossref), https://doi.org/10.3390/e21090913.
dc.identifier.doi10.3390/e21090913
dc.identifier.issn1099-4300
dc.identifier.officialurlhttps://doi.org/10.3390/e21090913
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12391
dc.issue.number9
dc.journal.titleEntropy
dc.language.isoeng
dc.page.initial913
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordComplexity
dc.subject.keywordMultivariate multiscale dispersion entropy
dc.subject.keywordMultivariate time series
dc.subject.keywordElectroencephalogram
dc.subject.keywordMagnetoencephalogram
dc.subject.ucmMedicina
dc.subject.ucmNeurociencias (Medicina)
dc.subject.unesco32 Ciencias Médicas
dc.subject.unesco2490 Neurociencias
dc.titleMultivariate Multiscale Dispersion Entropy of Biomedical Times Seriesen
dc.typejournal article
dc.volume.number21
dspace.entity.typePublication
relation.isAuthorOfPublicationad9d25f5-144f-4f51-96b4-472999c196fb
relation.isAuthorOfPublication.latestForDiscoveryad9d25f5-144f-4f51-96b4-472999c196fb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
entropy-21-00913.pdf
Size:
646.35 KB
Format:
Adobe Portable Document Format

Collections