Could dark matter or neutrinos discriminate between the enantiomers of a chiral molecule?
Loading...
Official URL
Full text at PDC
Publication date
2008
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
EPL Association, European Physical Society
Citation
Abstract
We examine the effect of cold dark matter on the discrimination between the two enantiomers of a chiral molecule. We estimate the energy difference between the two enantiomers due to the interaction between fermionic WIMPs (weak interacting massive particles) and molecular electrons on the basis that electrons have opposite helicities in opposite enantiomers. It is found that this energy difference is completely negligible. Dark matter could then be discarded as an inductor of chiroselection between enantiomers and then of biological homochirality. However, the effect of cosmological neutrinos, revisited with the currently accepted neutrino density, would reach, in the most favorable case, an upper bound of the same order of magnitude as the energy difference obtained from the well-known electroweak electron-nucleus interaction in some molecules.
Description
This work is supported by the DGICYT (Spain) project
BPA2005-02327, by the Universidad Complutense/CAM
projects 910309 and CCG06-UCM/ESP-137, and by
the MEC (Spain) projects CTQ2005-09185-C02-02 and
FIS2004-03267. The work of PB was supported by the
FPI grant BES-2006-11976 from the Spanish MEC. The
authors would like to thank A. L. Maroto and R. Pérez
de Tudela for useful discussions.