Could dark matter or neutrinos discriminate between the enantiomers of a chiral molecule?

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
EPL Association, European Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
We examine the effect of cold dark matter on the discrimination between the two enantiomers of a chiral molecule. We estimate the energy difference between the two enantiomers due to the interaction between fermionic WIMPs (weak interacting massive particles) and molecular electrons on the basis that electrons have opposite helicities in opposite enantiomers. It is found that this energy difference is completely negligible. Dark matter could then be discarded as an inductor of chiroselection between enantiomers and then of biological homochirality. However, the effect of cosmological neutrinos, revisited with the currently accepted neutrino density, would reach, in the most favorable case, an upper bound of the same order of magnitude as the energy difference obtained from the well-known electroweak electron-nucleus interaction in some molecules.
This work is supported by the DGICYT (Spain) project BPA2005-02327, by the Universidad Complutense/CAM projects 910309 and CCG06-UCM/ESP-137, and by the MEC (Spain) projects CTQ2005-09185-C02-02 and FIS2004-03267. The work of PB was supported by the FPI grant BES-2006-11976 from the Spanish MEC. The authors would like to thank A. L. Maroto and R. Pérez de Tudela for useful discussions.
[1] Bonner W. A., Orig. Life Evol. Biosph., 21 (1991) 59. [2] Jorissen A. and Cerf C., Orig. Life Evol. Biosph., 32 (2002) 129. [3] Cline D. B. (Editor), The Physical Origin of Homochirality in Life, AIP Conf. Proc., 379 (1996). [4] Hegstrom R. A., Rich A. and Van House J., Nature, 313 (1985) 391. [5] Bailey J., Chrysostomou A. and Hough J. H. et al. Science, 281 (1998) 672. [6] Bailey J., Orig. Life Evol. Biosph., 31 (2001) 167. [7] Buschermhle M., Whittet D. C. B., Chrysostomou A. et al., Astrophys. J., 624 (2005) 821. [8] Rikken G. L. J. A. and Raupach E., Nature, 405 (2000) 932. [9] Ruchon T., Vallet M., Chauvat D. et al., J. Chem. Phys., 125 (2006) 084104. [10] Engel M. H. and Macko S. A., Nature, 389 (1997) 265. [11] Pizzarello S. and Cronin J. R., Geochim. Cosmochim. Acta, 64 (2000) 329. [12] Bonner W. A., Orig. Life Evol. Biosph., 22 (1992) 407. [13] Bouchiat A. M. and Bouchiat C. C., Rep. Prog. Phys.,60 (1997) 1351. [14] Letokhov V. S., Phys. Lett. A, 53 (1975) 275. [15] Rein D. W., Hegstrom R. A. and Sandars P. G. H., J. Chem. Phys., 73 (1980) 2329. [16] Zanasi R., Lazzeretti A. and Soncini A., Phys. Rev. E, 59 (1999) 3382. [17] Laerdahl J. K. and Schwerdtfeger P., Phys. Rev. Lett., 84 (2000) 3811. [18] Soulard P. et al., Phys. Chem. Chem. Phys., 8 (2006) 79. [19] Crassous J. et al., Org. Biomol. Chem., 3 (2005) 2218. [20] Kondepudi D. K. and Nelson G. M., Nature, 314 (1985) 438. [21] Plasson R., Kondepudi D. K., Bersini H., Commeyras A. and Asakura K., Chirality, 19 (2007) 589. [22] Salam A., J. Mol. Evol., 33 (1991) 105. [23] Avalos M., Babiano R., Cintas P., Jim´enez J. L. and Palacios J. C., Tetrahedron Asymmetry, 11 (2000) 2845. [24] Chandrasekhar S., Chirality, 20 (2008) 84. [25] Bargueño P. and Gonzalo I., Orig. Life Evol. Biosph., 36 (2006) 171. [26] Bargueño P. and Pérez de Tudela R., Orig. Life Evol. Biosph., 37 (2007) 253. [27] Muñoz C., Int. J. Mod. Phys. A, 19 (2004) 3093. [28] Sadoulet B., Rev. Mod. Phys., 71 (1999) 197. [29] Gelmini G. B., Phys. Scr., T121 (2005) 131. [30] Stodolsky L., Phys. Rev. Lett., 34 (1975) 110. [31] Pérez-Díaz J. L., Pérez-García V. M. and Gonzalo I., Phys. Lett. A, 160 (1991) 453. [32] Duda G., Gelmini G. and Nussinov S., Phys. Rev. D, 64 (2001) 122001. [33] Dolgov A. D. et al., Nucl. Phys. B, 632 (2002) 363. [34] Binetruy P., Supersymmetry: Theory Experiment and Cosmology (Oxford University Press) 2006. [35] Dark Matter Tools Workgroup Home Page: http://