Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Self-imaging of gratings with rough strips

dc.contributor.authorTorcal Milla, Francisco José
dc.contributor.authorSánchez Brea, Luis Miguel
dc.date.accessioned2023-06-20T10:45:20Z
dc.date.available2023-06-20T10:45:20Z
dc.date.issued2008-10
dc.description© 2008 Optical Society of America. The authors thank Alfredo Luis and José María Rico-García for their fruitful ideas and discussions. This work has been supported by the DPI2005-02860 project of the Ministerio de Educación y Ciencia of Spain and Estratégicos Nacionales en Investigación Técnica (CENIT) project Tecnologías avanzadas para los equipos y procesos de fabricación de 2015: e-eficiente, e-cológica, e-máquina (eEe) of the Ministerio de Industria, Turismo y Comercio of Spain.
dc.description.abstractWe analyze the self-imaging process produced by a transmission grating whose strips present two different roughness levels. This kind of grating periodically modulates the transmitted light owing only to the different microtopographic properties of the strips. In spite of the fact that the grating is not purely periodic, it produces a kind of self-image at Talbot distances. These self-images gradually appear as light propagates, but they are not present just after the grating, as occurs in amplitude or phase gratings. There exists a distance from the grating, which depends on the stochastic properties of roughness, from which the contrast of the self-images becomes stable. Important cases are analyzed in detail, such as low- and high-roughness limits. We assume for the calculations that the grating can be used in a mobile system. Simulations using the Rayleigh–Sommerfeld regime have been performed, which confirm the validity of the theoretical approach proposed in this work
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación y Ciencia (MEC), España
dc.description.sponsorshipCentro para el Desarrollo Tecnológico Industrial (CDTI), España
dc.description.sponsorshipMinisterio de Economía y Competitividad, España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26244
dc.identifier.doi10.1364/JOSAA.25.002390
dc.identifier.issn1084-7529
dc.identifier.officialurlhttp://dx.doi.org/10.1364/JOSAA.25.002390
dc.identifier.relatedurlhttp://www.opticsinfobase.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51154
dc.issue.number10
dc.journal.titleJournal of The Optical Society Of America A-Optics Image Science and Vision
dc.language.isoeng
dc.page.final2394
dc.page.initial2390
dc.publisherOptical Society of America
dc.relation.projectIDDPI2005-02860
dc.relation.projectIDCENIT project "Tecnologías avanzadas para los equipos y procesos de fabricación de 2015: e-eficiente, e-cológica, e-máquina (eEe)"
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordFar-Field
dc.subject.keywordPolarization Gratings
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleSelf-imaging of gratings with rough strips
dc.typejournal article
dc.volume.number25
dcterms.references1. W. H. F. Talbot, “Facts relating to optical science”, Philos. Mag. 9, 401-407 (1836). 2. K. Patorski, “The self-imaging phenomenon and its applications”, Prog. Opt. 27, 1-108 (1989). 3. E. Keren and O. Kafri, “Diffraction effects in moiré deflectometry”, J. Opt. Soc. Am. A 2, 111-120 (1985). 4. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980). 5. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968). 6. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997). 7. C. Palmer, Diffraction Grating Handbook (Richardson Grating Laboratory, New York, 2000). 8. F. Gori, “Measuring Stokes parameters by means of a polarization grating”, Opt. Lett. 24, 584-586 (1999). 9. C. G. Someda, “Far field of polarization gratings”, Opt. Lett. 24, 1657-1659 (1999). 10. G. Piquero, R. Borghi, A. Mondello, and M. Santarsiero, “Far field of beams generated by quasi-homogeneous sources passing through polarization gratings”, Opt. Commun. 195, 339-350 (2001). 11. F. J. Torcal-Milla, L. M. Sanchez-Brea, and E. Bernabeu, “Talbot effect with rough reflection gratings”, Appl. Opt. 46, 3668-3673 (2007). [PubMed] 12. L. M. Sanchez-Brea, F. J. Torcal-Milla, and E. Bernabeu, “Talbot effect in metallic gratings under Gaussian illumination”, Opt. Commun. 278, 23-27 (2007). 13. L. M. Sanchez-Brea, F. J. Torcal-Milla, and E. Bernabeu, “Far field of gratings with rough strips”, J. Opt. Soc. Am. A 25, 828-833 (2008). 14. F. Shen and A. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula”, Appl. Opt. 45, 1102-1110 (2006). [PubMed] 15. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991). 16. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House, 1987). 17. J. W. Goodman, Statistical Optics (Wiley, 1985).
dspace.entity.typePublication
relation.isAuthorOfPublication72f8db7f-8a25-4d15-9162-486b0f884481
relation.isAuthorOfPublication.latestForDiscovery72f8db7f-8a25-4d15-9162-486b0f884481

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bernabeu,E29libre.pdf
Size:
523.41 KB
Format:
Adobe Portable Document Format

Collections