Ondas en el agua . La ecuación de Schrödinger no lineal y las olas extremas.
Loading...
Official URL
Full text at PDC
Publication date
2024
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
En este trabajo, se deduce la ecuación de Schrödinger No Lineal (NLS) y se buscan soluciones de la misma con el objetivo de construir un prototipo para explicar el fenómeno de la olas extremas, un fenómeno oceanográfico poco frecuente. Para ello, se presentan las ecuaciones de Navier-Stokes para un fluido ideal e incompresible y se caracteriza el problema de frontera libre. Las olas extremas se dan en el régimen de aguas profundas, por lo que se realizan las aproximaciones de dicho régimen al problema de frontera libre. Para resolver estas ecuaciones, se exponen los fallos del desarrollo perturbativo y se introduce el método de escalas múltiples, utilizado para deducir la ecuación NLS.
Una vez conseguida esta ecuación, se estudian las soluciones de tipo solitón, el solitón de Ma, el de Akhmediev y el solitón de Peregrine. Este último se ha podido comprobar experimentalmente en tanques de agua y constituye el prototipo fundamental para explicar el fenómeno de las olas extremas. Se adelanta que la NLS es un posible mecanismo de formación de dichas olas, aunque no es el único y puede contener algunas imprecisiones al aplicarlo al océano abierto
In this work, we derive the Nonlinear Schrödinger Equation (NLS) and try to find solutions in order to construct a prototype to provide an explaination to the rogue wave phenomenon, a rare oceanographic event. In this regard, we present the Navier-Stokes equations for an ideal and an incompressible fluid, and typify the free boundary problem. Rogue waves manifest in the deep-water regime; thus, approximations are made and applied to the free boundary problem. In order to resolve these equations, the failure of regular perturbation analysis is exposed and the multiple scales method used in the NLS derivation is introduced. Once the NLS is obtained, some soliton solution are analysed, namely the Ma soliton, the Akhmediev soliton and the Peregrine soliton. The latter has been experimentally validated in water tanks and represents the fundamental prototype for explaining the formation of rogue waves. It is anticipated that the NLS is a potential mechanism in the formation of these waves, although it is not the only mechanism and it could contain inaccuracies when applied to open ocean.
In this work, we derive the Nonlinear Schrödinger Equation (NLS) and try to find solutions in order to construct a prototype to provide an explaination to the rogue wave phenomenon, a rare oceanographic event. In this regard, we present the Navier-Stokes equations for an ideal and an incompressible fluid, and typify the free boundary problem. Rogue waves manifest in the deep-water regime; thus, approximations are made and applied to the free boundary problem. In order to resolve these equations, the failure of regular perturbation analysis is exposed and the multiple scales method used in the NLS derivation is introduced. Once the NLS is obtained, some soliton solution are analysed, namely the Ma soliton, the Akhmediev soliton and the Peregrine soliton. The latter has been experimentally validated in water tanks and represents the fundamental prototype for explaining the formation of rogue waves. It is anticipated that the NLS is a potential mechanism in the formation of these waves, although it is not the only mechanism and it could contain inaccuracies when applied to open ocean.