Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A preliminary test in classification and probabilities of misclassification

dc.contributor.authorMenéndez, María Luisa
dc.contributor.authorPardo Llorente, Julio Ángel
dc.contributor.authorPardo Llorente, Leandro
dc.contributor.authorZografos, Konstantinos
dc.date.accessioned2023-06-20T09:43:12Z
dc.date.available2023-06-20T09:43:12Z
dc.date.issued2005-06
dc.description.abstractConsider f(theta) to be a probability density function with parameter theta. A set of k populations can now be defined such that the ith population Pi(i) is the set of density functions f(theta 1(i)),...,f(theta mi(i)). This paper proposes a test, based on the Psi-dissimilariiy, of the hypothesis that a new individual from a population Pi(0) with a density function f(theta 0), belongs to the ith population. The probabilities of misclassification of the minimum Psi-dissimilarity classification rule are also obtained. In this paper, it is assumed that the parameters theta(1)((i)),...,theta(mi)((i)) and may be theta(0) are unknown and must be estimated from a set of training samples. Explicit expressions for the hypothesis test and the probabilities of misclassification are derived for the case where the populations Pi(i) consist of homoscedastic normal, as well as for gamma distributions.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio Griego para el Desarrollo.
dc.description.sponsorshipMinisterio Español de Asuntos Exteriores
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17495
dc.identifier.doi10.1080/02331880500097986
dc.identifier.issn0233-1888
dc.identifier.officialurlhttp://www.tandfonline.com/doi/pdf/10.1080/02331880500097986
dc.identifier.relatedurlhttp://www.tandfonline.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50243
dc.issue.number3
dc.journal.titleStatistics
dc.language.isoeng
dc.page.final205
dc.page.initial183
dc.publisherTaylor & Francis
dc.rights.accessRightsrestricted access
dc.subject.cdu519.237
dc.subject.keywordClassification
dc.subject.keywordDiscrimination
dc.subject.keywordMinimum distance classification rule
dc.subject.keywordProbabilities of misclassification
dc.subject.keywordϕ-Dissimilarity
dc.subject.keywordφ-Divergence
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleA preliminary test in classification and probabilities of misclassification
dc.typejournal article
dc.volume.number39
dcterms.referencesKrzanowski, W.J., 1988, Principles of Multivariate Analysis. A User’s Perspective (Oxford: Oxford Science Publications). Matusita, K., 1966, A distance and related statistics in multivariate analysis. In: P.R. Krishnaiah (Ed.), Multivariate Analysis (NewYork: Academic Press), pp. 187–200. Matusita, K., 1967, On the notion of affinity of several distributions and some of its applications. Annals of the Institute of Statistical Mathmetics, 19, 181–192. McLachlan, G.J., 1992, Discriminant Analysis and Statistical Pattern Recognition (NewYork:Wiley). Cacoullos, T. and Koutras, M., 1985, Minimum distance discrimination for spherical distributions. In: K. Matusita (Ed.) Statistical Theory and Data Analysis (North-Holland: Elsevier Science Publishers B. V.), pp. 91–101. Cacoullos, T. andKoutras, M., 1997, On the performance of minimum-distance classification rules forKotz-type elliptical distributions. In: N.L. Johnson and N. Balakrishnan (Eds), Advances in the Theory and Practice of Statistics: a Volume in Honor of Samuel Kotz (NewYork:Wiley), pp. 209–224. Koutras, M., 1992, Minimum distance discrimination rules and success rates for elliptical normal mixtures. Statistics and Probability Letters, 13, 259–268. Csiszár, I., 1963, Eine informationstheoretische ungleichung und ihre anwendung auf den beweis der ergodizitat von Markoffschen Ketten. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 8, 85–108. Ali, S.M. and Silvey, S.D., 1966, A general class of coefficients of divergence of one distribution from another. Journal of the Royal Statistical Society Series B-statistical, 28, 131–142. Koutras, M., 1987, On the performance of the linear discriminant function for spherical distributions. Journal of Multivariate Analysis, 22, 1–12. Bar-Hen, A., 1996, A preliminary test in discriminant analysis. Journal of Multivariate Analysis, 57, 266–276. Kala, R. and Krzy´sko, M., 2003, An extension of Bar-Hen’s preliminary test procedure. Journal of Multivariate Analysis, 84, 410–412. Bar-Hen, A. and Daudin, J.J., 1997, A test of a special case of typicality in linear discriminant analysis. Biometrics, 53, 39–48. Gyorfi, L. and Nemetz, T., 1978, f -Dissimilarity: a generalization of the affinity of several distributions. Annals of the Institute of Statistical Mathematics, 30, 105–113. Zografos, K., 1998, f -Dissimilarity of several distributions in testing statistical hypotheses. Annals of the Institute of Statistical Mathematics, 50, 295–310. Morales, D., Pardo, L. and Zografos, K., 1998, Informational distances and related statistics in mixed continuous and categorical variables. Journal of Statistical Planning and Inference, 75, 47–63. Serfling, R.J., 1980, Approximation Theorems of Mathematical Statistics (NewYork:Wiley). Bishop,Y.M.M., Fienberg, S.E. and Holland, P.W., 1975, Discrete Multivariate Analysis: Theory and Practice. (Cambridge: The M.I.T. Press). Toussaint, G.T., 1974, Some properties of Matusita’s measure of affinity of several distributions. Annals of the Institute of Statistical Mathematics, 26, 389–394. Vajda, I., 1989, Theory of Statistical Inference and Information (The Netherlands: KluwerAcademic Publishers). Menéndez, M.L., 2000, Shannon’s entropy in exponential families: statistical applications. Applied Mathematics Letters, 13, 37–42. Mayer-Wolf, E., 1990, The Cramer-Rao functional and limiting laws. Annals of Probability, 18, 840–850.
dspace.entity.typePublication
relation.isAuthorOfPublication5e051d08-2974-4236-9c25-5e14369a7b61
relation.isAuthorOfPublicationa6409cba-03ce-4c3b-af08-e673b7b2bf58
relation.isAuthorOfPublication.latestForDiscovery5e051d08-2974-4236-9c25-5e14369a7b61

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PardoJulio14.pdf
Size:
229.68 KB
Format:
Adobe Portable Document Format

Collections