Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On sextic curves with big Milnor number.

dc.book.titleTrends in Singularities
dc.contributor.authorArtal Bartolo, Enrique
dc.contributor.authorCarmona Ruber, Jorge
dc.contributor.authorCogolludo Agustín, José Ignacio
dc.contributor.editorLibgober, Amatoly
dc.contributor.editorTibăr, Mihai
dc.date.accessioned2023-06-20T21:07:42Z
dc.date.available2023-06-20T21:07:42Z
dc.date.issued2002
dc.description.abstractIn this work we present an exhaustive description, up to projective isomorphism, of all irreducible sextic curves in ℙ2 having a singular point of type , A n ,n⩾15 n ≥ 15, only rational singularities and global Milnor number at least 18. Moreover, we develop a method for an explicit construction of sextic curves with at least eight — possibly infinitely near — double points. This method allows us to express such sextic curves in terms of arrangements of curves with lower degrees and it provides a geometric picture of possible deformations. Because of the large number of cases, we have chosen to carry out only a few to give some insights into the general situation.
dc.description.departmentSección Deptal. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.sponsorshipDGES
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22480
dc.identifier.doi10.1007/978-3-0348-8161-6_1
dc.identifier.isbn978-3-0348-9461-6
dc.identifier.officialurlhttp://link.springer.com/chapter/10.1007/978-3-0348-8161-6_1
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60756
dc.language.isoeng
dc.page.final29
dc.page.initial1
dc.page.total246
dc.publication.placeUSA
dc.publisherBirkhäuser Basel
dc.relation.projectIDPB97-0284-C02-02
dc.relation.projectIDPB97-0284-C02-01
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordEquisingular family
dc.subject.keywordSextic curves
dc.subject.keywordDeformation
dc.subject.keywordFundamental group
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn sextic curves with big Milnor number.
dc.typebook part
dcterms.references1.E. Artal Bartolo, Sur les couples de Zariski, J.Algebraic Geom. 3 (1994), no. 2, 223–247. E. Artal Bartolo, J. Carmona, J.I. Cogolludo, and H.Tokunaga, On curves with singular points in special position, J. Knot Theory Ramifications 10 (2001), no. 4,547–578. A. I. Degtyarëv, Alexander polynomial of a curve of degree six, J. Knot Theory Ramifications 3 (1994), no. 4, 439–454. A. Dimca, Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New York, 1992. K. Kodaira, On the structure of compact complex analytic surfaces. II, Amer. J. Math. 88 (1966), 682–721. A. Libgober, Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke Math. J. 49 (1982), no. 4, 833–851. I. Luengo, On the existence of complete families of projective plane curves, which are obstructed, J. London Math. Soc. (2) 36 (1987), no. 1, 33–43. S. Yu. Orevkov and E. I. Shustin, Flexible - algebraically unrealizable curves: rehabilitation of Hilbert-Rohn-Gudkov approach, Preprint, 2000. D.T. Pho, Classification of singularities on torus curves of type (2, 3), to appear in Kodai Math. J., 2001. D.T. Pho and M. Oka, Fundamental group of sextics of torus type, this Volume. T. Shioda, On the Mordell-Weil lattices,Comment. Math.Univ. St. Paul. 39 (1990), no. 2, 211–240. H. Tokunaga, Some examples of Zariski pairs arising from certain elliptic K3 surfaces. II. Degtyarev’s conjecture,Math. Z. 230 (1999), no. 2, 389–400. J.-G. Yang, Sextic curves with simple singularities,Tohoku Math. J. (2) 48 (1996), no. 2, 203–227. H. Yoshihara, On plane rational curves, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 4, 152–155. O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve,Amer. J. Math. 51 (1929), 305–328. O. Zariski, On the irregularity of cyclic multiple planes, Ann. Math. 32 (1931), 445–489.
dspace.entity.typePublication
relation.isAuthorOfPublicationfaea3c31-07a3-433c-96f8-f1bfae9110a1
relation.isAuthorOfPublication.latestForDiscoveryfaea3c31-07a3-433c-96f8-f1bfae9110a1

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Carmona06.pdf
Size:
432.35 KB
Format:
Adobe Portable Document Format