Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Testing the Box-Cox Parameter for an Integrated Process

dc.contributor.authorHuang, Jian
dc.contributor.authorKobayashi, Masahito
dc.contributor.authorMcAleer, Michael
dc.date.accessioned2023-06-20T09:13:14Z
dc.date.available2023-06-20T09:13:14Z
dc.date.issued2011-05
dc.description.abstractThis paper analyses the constant elasticity of volatility (CEV) model suggested by Chan et al. (1992). The CEV model without mean reversion is shown to be the inverse Box-Cox transformation of integrated processes asymptotically. It is demonstrated that the maximum likelihood estimator of the power parameter has a nonstandard asymptotic distribution, which is expressed as an integral of Brownian motions, when the data generating process is not mean reverting. However, it is shown that the t-ratio follows a standard normal distribution asymptotically, so that the use of the conventional t-test in analyzing the power parameter of the CEV model is justified even if there is no mean reversion, as is often the case in empirical research. The model may applied to ultra high frequency data.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedFALSE
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/12815
dc.identifier.relatedurlhttps://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49008
dc.issue.number19
dc.language.isoeng
dc.page.total21
dc.publication.placeMadrid
dc.publisherInstituto Complutense de Análisis Económico. Universidad Complutense de Madrid
dc.relation.ispartofseriesDocumentos de trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rightsAtribución-NoComercial 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/es/
dc.subject.keywordBox-Cox transformation
dc.subject.keywordBrownian Motion
dc.subject.keywordConstant Elasticity of Volatility
dc.subject.keywordMean Reversion
dc.subject.keywordNonstandard distribution.
dc.subject.ucmEconometría (Economía)
dc.subject.unesco5302 Econometría
dc.titleTesting the Box-Cox Parameter for an Integrated Process
dc.typetechnical report
dc.volume.number2011
dcterms.referencesAdkins, L.C. and T. Krehbiel (1999), “Mean Reversion and Volatility of Short-term London Interbank Offer Rates: An Empirical Comparison of Competing Models”, International Review of Economics and Finance, 8, 45-54. Bickel, P.J. and K.A. Doksum (1981), “An Analysis of Transformations Revisited”, Journal of the American Statistical Association, 76, 296-310. Box, G.E.P. and D.R. Cox (1964), “An Analysis of Transformations”, Journal of the Royal Statistical Society B, 26, 211-243. Brenner, R.J.R., H. Harjes and K.F. Kroner (1996), “Another Look at Models of the Short-term Interest Rate”, Journal of Financial and Quantitative Analysis, 31, 85-107. Bliss, R.R. and D.C. Smith (1998), “The Elasticity of Interest Rate Volatility: Chan, Karolyi, Longstaff and Sanders Revisited”, Journal of Risk, 1, 21-46. Chan, K.C., G.A. Karolyi, F.A. Longstaff and A.B. Sanders (1992), “An Empirical Comparison of Alternative Models of the Short-Term Interest Rate”, Journal of Finance, 47, 1209-1227. Cox, J.C., J.E. Ingersoll and S.A. Ross (1985), “A Theory of the Term Structure of Interest Rates”, Econometrica, 53, 385-407. Dickey, D.A. and W.A. Fuller (1979), “Distribution of the Estimators for Autoregressive Time Series with a Unit Root”, Journal of the American Statistical Association, 74, 427-431. Jarque, C. and A. Bera (1980), “Efficient Tests for Normality, Homoskedasticity, and Serial Independence of Regression Residuals”, Economics Letters, 6, 255-259. Kobayashi, M. and M. McAleer (1999), “Tests of Linear and Logarithmic Transformations for Integrated Processes”, Journal of the American Statistical Association, 94, 860-868. Koedijk, K.G., F.G.J. Nissen, P.C. Schotman and C.C.P. Wolfe (1997), “The Dynamics of Short-Term Interest Rate Volatility Reconsidered”, European Finance Review, 1, 105-130. McAleer, M. (2005), “Automated Inference and Learning in Modeling Financial Volatility”, Econometric Theory, 21, 232-261. McAleer, M. and M.C. Medeiros (2008), “Realized Volatility: A Review”, Econometric Reviews, 27, 10-45. Park, J.Y. and P.C.B. Phillips (1999), “Asymptotics for Nonlinear Transformations of Integrated Time Series”, Econometric Theory, 15, 269-298. Park, J.Y. and P.C.B. Phillips (2001), “Nonlinear Regressions with Integrated Time Series”, Econometrica, 69, 117-161. Rodrigues, P. and A. Rubia (2004), “Testing Non-stationarity in Short-term Interest Rates”, Technical Report, Faculty of Economics, University of Algarve. Staiger, D. and J.H. Stock (1997), “Instrumental Variables Regression with Weak Instruments”, Econometrica, 65, 557-586. Treepongkaruna, S. and S.F. Gray (2003), “On the Robustness of Short-rate Models”, Accounting and Finance, 43, 87-121. Vasicek, O. (1977), “An Equilibrium Characterization of the Term Structure”, Journal of Financial Economics, 5, 177-158. Yu, J. and P.C.B. Phillips (2001), “Gaussian Approach for Continuous Time Models of the Short Term Interest Rate”, Econometrics Journal, 4, 210-224.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1119.pdf
Size:
253.3 KB
Format:
Adobe Portable Document Format