Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

About the homological discrete Conley index of isolated invariant acyclic continua

Loading...
Thumbnail Image

Full text at PDC

Publication date

2013

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Geometry & Topology Publications, Univ Warwick, Mathematics Inst
Citations
Google Scholar

Citation

Abstract

This article includes an almost self-contained exposition on the discrete Conley index and its duality. We work with a locally defined homeomorphism f in R-d and an acyclic continuum X, such as a cellular set or a fixed point, invariant under f and isolated. We prove that the trace of the first discrete homological Conley index of f and X is greater than or equal to -1 and describe its periodical behavior. If equality holds then the traces of the higher homological indices are 0. In the case of orientation-reversing homeomorphisms of R-3, we obtain a characterization of the fixed point index sequence {i(f(n) (,) p}n >= 1 for a fixed point p which is isolated as an invariant set. In particular, we obtain that i(f , p) <= 1. As a corollary, we prove that there are no minimal orientation-reversing homeomorphisms in R-3.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections