Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quantifying infection transmission in a stochastic SVIS model with infection reintroduction when vaccine is partially effective

dc.conference.date05-08 Feb 2023
dc.conference.placeBilbao
dc.conference.title14th Conference on Dynamical Systems Applied
dc.contributor.authorGamboa Pérez, María
dc.date.accessioned2024-03-04T09:39:01Z
dc.date.available2024-03-04T09:39:01Z
dc.date.issued2023-02
dc.description.abstractThis communication is framed within the area of epidemic modelling and studies infectious disease dynamics in a stochastic Markovian approach. We consider a constant size population where individuals are homogeneous and uniformly mixed. Prior the start of the epidemic, a percentage of the population was immunized preventively to an infectious disease with an available vaccine that fails with a certain probability. The underlying mathematical model is the stochastic SVIS model with infection reintroduction and imperfect vaccine. The evolution of the infectious disease, at each time point t, is represented in terms of the bidimensional CTMC, X = {(V (t), I(t)), t ! 0}, where the random variables V (t) and I(t) count the number of vaccinated and infected individuals at time t, respectively. The basic reproduction number, R0, is probably the most well-known descriptor of disease transmission and plays a privileged role in epidemiology. It is used to determine the herd immunity threshold or the vaccine coverage required to control the spread of a disease when a vaccine offers a complete protection. Due to repeated contacts between the marked infective and previously infected individuals, R0 overestimates the average number of secondary infections and leads to high immunization coverage. In this sense, we propose alternatives exact measures to R0 to quantify the potential transmission of an infectious disease. Specifically, we describe the exact and population reproduction numbers, Re0 and Rp, in a post-vaccination context. For both random variables, we derive theoretical schemes involving their mass probability and generating functions, and moments distributions. We complement theoretical and algorithmic results with several numerical examples.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Tecnología e Innovación
dc.description.statuspub
dc.identifier.isbn9789895358908
dc.identifier.officialurlhttps://sites.google.com/bcamath.org/dsabns2023/home
dc.identifier.urihttps://hdl.handle.net/20.500.14352/101886
dc.language.isoeng
dc.page.initial109
dc.relation.projectIDMTM 2014-58091-P
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu519.216
dc.subject.cdu616.9
dc.subject.ucmEnfermedades infecciosas
dc.subject.ucmProcesos estocásticos
dc.subject.unesco3205.05 Enfermedades Infecciosas
dc.subject.unesco1208.08 Procesos Estocásticos
dc.titleQuantifying infection transmission in a stochastic SVIS model with infection reintroduction when vaccine is partially effective
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublicationb58f02de-ea0e-4b3f-b0db-41b582b5b264
relation.isAuthorOfPublication.latestForDiscoveryb58f02de-ea0e-4b3f-b0db-41b582b5b264

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Quantifying.pdf
Size:
27.4 KB
Format:
Adobe Portable Document Format